![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matsca2 | Structured version Visualization version GIF version |
Description: The scalars of the matrix ring are the underlying ring. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matsca2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
Ref | Expression |
---|---|
matsca2 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 = (Scalar‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpfi 9355 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
2 | 1 | anidms 566 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
3 | eqid 2734 | . . . . 5 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
4 | 3 | frlmsca 21790 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑁 × 𝑁) ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
5 | 4 | ancoms 458 | . . 3 ⊢ (((𝑁 × 𝑁) ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 = (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
6 | 2, 5 | sylan 580 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 = (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
7 | matsca2.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
8 | 7, 3 | matsca 22434 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Scalar‘𝐴)) |
9 | 6, 8 | eqtrd 2774 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 = (Scalar‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 × cxp 5686 ‘cfv 6562 (class class class)co 7430 Fincfn 8983 Scalarcsca 17300 freeLMod cfrlm 21783 Mat cmat 22426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-prds 17493 df-pws 17495 df-sra 21189 df-rgmod 21190 df-dsmm 21769 df-frlm 21784 df-mat 22427 |
This theorem is referenced by: matvscl 22452 matassa 22465 mat0dimscm 22490 scmatid 22535 scmataddcl 22537 scmatsubcl 22538 smatvscl 22545 scmatlss 22546 scmatghm 22554 scmatmhm 22555 matinv 22698 pmatcollpwfi 22803 pmatcollpw3fi1lem1 22807 pm2mp 22846 chpmat1dlem 22856 chpmat1d 22857 chpdmatlem0 22858 chfacfscmulcl 22878 chfacfscmul0 22879 chfacfscmulgsum 22881 cpmidpmatlem3 22893 cpmadugsumlemB 22895 cpmadugsumlemC 22896 cpmadugsumlemF 22897 cpmadugsumfi 22898 cpmidgsum2 22900 cayhamlem2 22905 chcoeffeqlem 22906 matdim 33642 |
Copyright terms: Public domain | W3C validator |