Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matsca2 | Structured version Visualization version GIF version |
Description: The scalars of the matrix ring are the underlying ring. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matsca2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
Ref | Expression |
---|---|
matsca2 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 = (Scalar‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpfi 8815 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
2 | 1 | anidms 571 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
3 | eqid 2759 | . . . . 5 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
4 | 3 | frlmsca 20511 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑁 × 𝑁) ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
5 | 4 | ancoms 463 | . . 3 ⊢ (((𝑁 × 𝑁) ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 = (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
6 | 2, 5 | sylan 584 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 = (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
7 | matsca2.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
8 | 7, 3 | matsca 21108 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Scalar‘𝐴)) |
9 | 6, 8 | eqtrd 2794 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 = (Scalar‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 × cxp 5523 ‘cfv 6336 (class class class)co 7151 Fincfn 8528 Scalarcsca 16619 freeLMod cfrlm 20504 Mat cmat 21100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-ot 4532 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8932 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-dec 12131 df-uz 12276 df-fz 12933 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-mulr 16630 df-sca 16632 df-vsca 16633 df-ip 16634 df-tset 16635 df-ple 16636 df-ds 16638 df-hom 16640 df-cco 16641 df-prds 16772 df-pws 16774 df-sra 20005 df-rgmod 20006 df-dsmm 20490 df-frlm 20505 df-mat 21101 |
This theorem is referenced by: matvscl 21124 matassa 21137 mat0dimscm 21162 scmatid 21207 scmataddcl 21209 scmatsubcl 21210 smatvscl 21217 scmatlss 21218 scmatghm 21226 scmatmhm 21227 matinv 21370 pmatcollpwfi 21475 pmatcollpw3fi1lem1 21479 pm2mp 21518 chpmat1dlem 21528 chpmat1d 21529 chpdmatlem0 21530 chfacfscmulcl 21550 chfacfscmul0 21551 chfacfscmulgsum 21553 cpmidpmatlem3 21565 cpmadugsumlemB 21567 cpmadugsumlemC 21568 cpmadugsumlemF 21569 cpmadugsumfi 21570 cpmidgsum2 21572 cayhamlem2 21577 chcoeffeqlem 21578 matdim 31212 |
Copyright terms: Public domain | W3C validator |