MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matsca2 Structured version   Visualization version   GIF version

Theorem matsca2 21023
Description: The scalars of the matrix ring are the underlying ring. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
matsca2.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
matsca2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 = (Scalar‘𝐴))

Proof of Theorem matsca2
StepHypRef Expression
1 xpfi 8783 . . . 4 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
21anidms 569 . . 3 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
3 eqid 2821 . . . . 5 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
43frlmsca 20891 . . . 4 ((𝑅𝑉 ∧ (𝑁 × 𝑁) ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))))
54ancoms 461 . . 3 (((𝑁 × 𝑁) ∈ Fin ∧ 𝑅𝑉) → 𝑅 = (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))))
62, 5sylan 582 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 = (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))))
7 matsca2.a . . 3 𝐴 = (𝑁 Mat 𝑅)
87, 3matsca 21018 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Scalar‘𝐴))
96, 8eqtrd 2856 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 = (Scalar‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110   × cxp 5548  cfv 6350  (class class class)co 7150  Fincfn 8503  Scalarcsca 16562   freeLMod cfrlm 20884   Mat cmat 21010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-prds 16715  df-pws 16717  df-sra 19938  df-rgmod 19939  df-dsmm 20870  df-frlm 20885  df-mat 21011
This theorem is referenced by:  matvscl  21034  matassa  21047  mat0dimscm  21072  scmatid  21117  scmataddcl  21119  scmatsubcl  21120  smatvscl  21127  scmatlss  21128  scmatghm  21136  scmatmhm  21137  matinv  21280  pmatcollpwfi  21384  pmatcollpw3fi1lem1  21388  pm2mp  21427  chpmat1dlem  21437  chpmat1d  21438  chpdmatlem0  21439  chfacfscmulcl  21459  chfacfscmul0  21460  chfacfscmulgsum  21462  cpmidpmatlem3  21474  cpmadugsumlemB  21476  cpmadugsumlemC  21477  cpmadugsumlemF  21478  cpmadugsumfi  21479  cpmidgsum2  21481  cayhamlem2  21486  chcoeffeqlem  21487  matdim  31008
  Copyright terms: Public domain W3C validator