| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovolval4 | Structured version Visualization version GIF version | ||
| Description: The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 46632, but here 𝑓 may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| ovolval4.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| ovolval4.m | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} |
| Ref | Expression |
|---|---|
| ovolval4 | ⊢ (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolval4.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | ovolval4.m | . 2 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} | |
| 3 | 2fveq3 6827 | . . . 4 ⊢ (𝑘 = 𝑛 → (1st ‘(𝑓‘𝑘)) = (1st ‘(𝑓‘𝑛))) | |
| 4 | 2fveq3 6827 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (2nd ‘(𝑓‘𝑘)) = (2nd ‘(𝑓‘𝑛))) | |
| 5 | 3, 4 | breq12d 5105 | . . . . 5 ⊢ (𝑘 = 𝑛 → ((1st ‘(𝑓‘𝑘)) ≤ (2nd ‘(𝑓‘𝑘)) ↔ (1st ‘(𝑓‘𝑛)) ≤ (2nd ‘(𝑓‘𝑛)))) |
| 6 | 5, 4, 3 | ifbieq12d 4505 | . . . 4 ⊢ (𝑘 = 𝑛 → if((1st ‘(𝑓‘𝑘)) ≤ (2nd ‘(𝑓‘𝑘)), (2nd ‘(𝑓‘𝑘)), (1st ‘(𝑓‘𝑘))) = if((1st ‘(𝑓‘𝑛)) ≤ (2nd ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛)), (1st ‘(𝑓‘𝑛)))) |
| 7 | 3, 6 | opeq12d 4832 | . . 3 ⊢ (𝑘 = 𝑛 → 〈(1st ‘(𝑓‘𝑘)), if((1st ‘(𝑓‘𝑘)) ≤ (2nd ‘(𝑓‘𝑘)), (2nd ‘(𝑓‘𝑘)), (1st ‘(𝑓‘𝑘)))〉 = 〈(1st ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ (2nd ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛)), (1st ‘(𝑓‘𝑛)))〉) |
| 8 | 7 | cbvmptv 5196 | . 2 ⊢ (𝑘 ∈ ℕ ↦ 〈(1st ‘(𝑓‘𝑘)), if((1st ‘(𝑓‘𝑘)) ≤ (2nd ‘(𝑓‘𝑘)), (2nd ‘(𝑓‘𝑘)), (1st ‘(𝑓‘𝑘)))〉) = (𝑛 ∈ ℕ ↦ 〈(1st ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ (2nd ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛)), (1st ‘(𝑓‘𝑛)))〉) |
| 9 | 1, 2, 8 | ovolval4lem2 46635 | 1 ⊢ (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wrex 3053 {crab 3394 ⊆ wss 3903 ifcif 4476 〈cop 4583 ∪ cuni 4858 class class class wbr 5092 ↦ cmpt 5173 × cxp 5617 ran crn 5620 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 ↑m cmap 8753 infcinf 9331 ℝcr 11008 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 ℕcn 12128 (,)cioo 13248 vol*covol 25361 volcvol 25362 Σ^csumge0 46347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-rest 17326 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-bases 22831 df-cmp 23272 df-ovol 25363 df-vol 25364 df-sumge0 46348 |
| This theorem is referenced by: ovolval5 46640 |
| Copyright terms: Public domain | W3C validator |