Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval4 Structured version   Visualization version   GIF version

Theorem ovolval4 46305
Description: The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 46301, but here 𝑓 may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval4.a (𝜑𝐴 ⊆ ℝ)
ovolval4.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval4 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑀(𝑦,𝑓)

Proof of Theorem ovolval4
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval4.a . 2 (𝜑𝐴 ⊆ ℝ)
2 ovolval4.m . 2 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
3 2fveq3 6895 . . . 4 (𝑘 = 𝑛 → (1st ‘(𝑓𝑘)) = (1st ‘(𝑓𝑛)))
4 2fveq3 6895 . . . . . 6 (𝑘 = 𝑛 → (2nd ‘(𝑓𝑘)) = (2nd ‘(𝑓𝑛)))
53, 4breq12d 5156 . . . . 5 (𝑘 = 𝑛 → ((1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘)) ↔ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
65, 4, 3ifbieq12d 4551 . . . 4 (𝑘 = 𝑛 → if((1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘)), (2nd ‘(𝑓𝑘)), (1st ‘(𝑓𝑘))) = if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))))
73, 6opeq12d 4879 . . 3 (𝑘 = 𝑛 → ⟨(1st ‘(𝑓𝑘)), if((1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘)), (2nd ‘(𝑓𝑘)), (1st ‘(𝑓𝑘)))⟩ = ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
87cbvmptv 5256 . 2 (𝑘 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑘)), if((1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘)), (2nd ‘(𝑓𝑘)), (1st ‘(𝑓𝑘)))⟩) = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
91, 2, 8ovolval4lem2 46304 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wrex 3060  {crab 3419  wss 3946  ifcif 4523  cop 4629   cuni 4905   class class class wbr 5143  cmpt 5226   × cxp 5670  ran crn 5673  ccom 5676  cfv 6543  (class class class)co 7413  1st c1st 7990  2nd c2nd 7991  m cmap 8844  infcinf 9474  cr 11145  *cxr 11285   < clt 11286  cle 11287  cn 12255  (,)cioo 13369  vol*covol 25476  volcvol 25477  Σ^csumge0 46016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-inf2 9674  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8846  df-pm 8847  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fi 9444  df-sup 9475  df-inf 9476  df-oi 9543  df-dju 9934  df-card 9972  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-n0 12516  df-z 12602  df-uz 12866  df-q 12976  df-rp 13020  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13373  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13673  df-fl 13803  df-seq 14013  df-exp 14073  df-hash 14340  df-cj 15096  df-re 15097  df-im 15098  df-sqrt 15232  df-abs 15233  df-clim 15482  df-rlim 15483  df-sum 15683  df-rest 17429  df-topgen 17450  df-psmet 21328  df-xmet 21329  df-met 21330  df-bl 21331  df-mopn 21332  df-top 22881  df-topon 22898  df-bases 22934  df-cmp 23376  df-ovol 25478  df-vol 25479  df-sumge0 46017
This theorem is referenced by:  ovolval5  46309
  Copyright terms: Public domain W3C validator