MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mul Structured version   Visualization version   GIF version

Theorem deg1mul 26174
Description: Degree of multiplication of two nonzero polynomials in a domain. (Contributed by metakunt, 6-May-2025.)
Hypotheses
Ref Expression
deg1mul.1 𝐷 = (deg1𝑅)
deg1mul.2 𝑃 = (Poly1𝑅)
deg1mul.3 𝐵 = (Base‘𝑃)
deg1mul.4 · = (.r𝑃)
deg1mul.5 0 = (0g𝑃)
deg1mul.6 (𝜑𝑅 ∈ Domn)
deg1mul.7 (𝜑𝐹𝐵)
deg1mul.8 (𝜑𝐹0 )
deg1mul.9 (𝜑𝐺𝐵)
deg1mul.10 (𝜑𝐺0 )
Assertion
Ref Expression
deg1mul (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷𝐹) + (𝐷𝐺)))

Proof of Theorem deg1mul
StepHypRef Expression
1 deg1mul.1 . 2 𝐷 = (deg1𝑅)
2 deg1mul.2 . 2 𝑃 = (Poly1𝑅)
3 eqid 2740 . 2 (RLReg‘𝑅) = (RLReg‘𝑅)
4 deg1mul.3 . 2 𝐵 = (Base‘𝑃)
5 deg1mul.4 . 2 · = (.r𝑃)
6 deg1mul.5 . 2 0 = (0g𝑃)
7 deg1mul.6 . . 3 (𝜑𝑅 ∈ Domn)
8 domnring 20729 . . 3 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
97, 8syl 17 . 2 (𝜑𝑅 ∈ Ring)
10 deg1mul.7 . 2 (𝜑𝐹𝐵)
11 deg1mul.8 . 2 (𝜑𝐹0 )
121, 2, 6, 4deg1nn0cl 26147 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
139, 10, 11, 12syl3anc 1371 . . . 4 (𝜑 → (𝐷𝐹) ∈ ℕ0)
14 eqid 2740 . . . . 5 (coe1𝐹) = (coe1𝐹)
15 eqid 2740 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1614, 4, 2, 15coe1fvalcl 22235 . . . 4 ((𝐹𝐵 ∧ (𝐷𝐹) ∈ ℕ0) → ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅))
1710, 13, 16syl2anc 583 . . 3 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅))
18 eqid 2740 . . . . 5 (0g𝑅) = (0g𝑅)
191, 2, 6, 4, 18, 14deg1ldg 26151 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
209, 10, 11, 19syl3anc 1371 . . 3 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
2115, 3, 18domnrrg 20735 . . 3 ((𝑅 ∈ Domn ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅) ∧ ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅)) → ((coe1𝐹)‘(𝐷𝐹)) ∈ (RLReg‘𝑅))
227, 17, 20, 21syl3anc 1371 . 2 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ (RLReg‘𝑅))
23 deg1mul.9 . 2 (𝜑𝐺𝐵)
24 deg1mul.10 . 2 (𝜑𝐺0 )
251, 2, 3, 4, 5, 6, 9, 10, 11, 22, 23, 24deg1mul2 26173 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷𝐹) + (𝐷𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448   + caddc 11187  0cn0 12553  Basecbs 17258  .rcmulr 17312  0gc0g 17499  Ringcrg 20260  RLRegcrlreg 20713  Domncdomn 20714  Poly1cpl1 22199  coe1cco1 22200  deg1cdg1 26113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-cnfld 21388  df-psr 21952  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-ply1 22204  df-coe1 22205  df-mdeg 26114  df-deg1 26115
This theorem is referenced by:  ply1dg3rt0irred  33572  deg1gprod  42097  deg1pow  42098
  Copyright terms: Public domain W3C validator