![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1sclid | Structured version Visualization version GIF version |
Description: Recover the base scalar from a scalar polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
ply1scl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1scl.a | ⊢ 𝐴 = (algSc‘𝑃) |
ply1sclid.k | ⊢ 𝐾 = (Base‘𝑅) |
Ref | Expression |
---|---|
ply1sclid | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → 𝑋 = ((coe1‘(𝐴‘𝑋))‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1scl.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ply1scl.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑃) | |
3 | ply1sclid.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
4 | eqid 2771 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | 1, 2, 3, 4 | coe1scl 19872 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (coe1‘(𝐴‘𝑋)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑋, (0g‘𝑅)))) |
6 | 5 | fveq1d 6335 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → ((coe1‘(𝐴‘𝑋))‘0) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑋, (0g‘𝑅)))‘0)) |
7 | 0nn0 11514 | . . . 4 ⊢ 0 ∈ ℕ0 | |
8 | iftrue 4232 | . . . . 5 ⊢ (𝑥 = 0 → if(𝑥 = 0, 𝑋, (0g‘𝑅)) = 𝑋) | |
9 | eqid 2771 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑋, (0g‘𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑋, (0g‘𝑅))) | |
10 | 8, 9 | fvmptg 6424 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ 𝑋 ∈ 𝐾) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑋, (0g‘𝑅)))‘0) = 𝑋) |
11 | 7, 10 | mpan 670 | . . 3 ⊢ (𝑋 ∈ 𝐾 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑋, (0g‘𝑅)))‘0) = 𝑋) |
12 | 11 | adantl 467 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑋, (0g‘𝑅)))‘0) = 𝑋) |
13 | 6, 12 | eqtr2d 2806 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → 𝑋 = ((coe1‘(𝐴‘𝑋))‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ifcif 4226 ↦ cmpt 4864 ‘cfv 6030 0cc0 10142 ℕ0cn0 11499 Basecbs 16064 0gc0g 16308 Ringcrg 18755 algSccascl 19526 Poly1cpl1 19762 coe1cco1 19763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-ofr 7049 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-oi 8575 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-tset 16168 df-ple 16169 df-0g 16310 df-gsum 16311 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-ghm 17866 df-cntz 17957 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-subrg 18988 df-lmod 19075 df-lss 19143 df-ascl 19529 df-psr 19571 df-mvr 19572 df-mpl 19573 df-opsr 19575 df-psr1 19765 df-vr1 19766 df-ply1 19767 df-coe1 19768 |
This theorem is referenced by: ply1sclf1 19874 cply1coe0bi 19885 m2cpminvid 20778 m2cpminvid2lem 20779 deg1sclle 24092 |
Copyright terms: Public domain | W3C validator |