Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgnbgreunbgrlem1 Structured version   Visualization version   GIF version

Theorem pgnbgreunbgrlem1 48275
Description: Lemma 1 for pgnbgreunbgr 48287. (Contributed by AV, 15-Nov-2025.)
Hypotheses
Ref Expression
pgnbgreunbgr.g 𝐺 = (5 gPetersenGr 2)
pgnbgreunbgr.v 𝑉 = (Vtx‘𝐺)
pgnbgreunbgr.e 𝐸 = (Edg‘𝐺)
pgnbgreunbgr.n 𝑁 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
pgnbgreunbgrlem1 ((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
Distinct variable group:   𝑦,𝑏
Allowed substitution hints:   𝐸(𝑦,𝑏)   𝐺(𝑦,𝑏)   𝐾(𝑦,𝑏)   𝐿(𝑦,𝑏)   𝑁(𝑦,𝑏)   𝑉(𝑦,𝑏)   𝑋(𝑦,𝑏)

Proof of Theorem pgnbgreunbgrlem1
StepHypRef Expression
1 c0ex 11117 . . . . . 6 0 ∈ V
2 vex 3441 . . . . . 6 𝑦 ∈ V
31, 2op2ndd 7941 . . . . 5 (𝑋 = ⟨0, 𝑦⟩ → (2nd𝑋) = 𝑦)
4 oveq1 7362 . . . . . . . . . . 11 ((2nd𝑋) = 𝑦 → ((2nd𝑋) + 1) = (𝑦 + 1))
54oveq1d 7370 . . . . . . . . . 10 ((2nd𝑋) = 𝑦 → (((2nd𝑋) + 1) mod 5) = ((𝑦 + 1) mod 5))
65opeq2d 4833 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → ⟨0, (((2nd𝑋) + 1) mod 5)⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩)
76eqeq2d 2744 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ↔ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩))
8 opeq2 4827 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → ⟨1, (2nd𝑋)⟩ = ⟨1, 𝑦⟩)
98eqeq2d 2744 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨1, (2nd𝑋)⟩ ↔ 𝐿 = ⟨1, 𝑦⟩))
10 oveq1 7362 . . . . . . . . . . 11 ((2nd𝑋) = 𝑦 → ((2nd𝑋) − 1) = (𝑦 − 1))
1110oveq1d 7370 . . . . . . . . . 10 ((2nd𝑋) = 𝑦 → (((2nd𝑋) − 1) mod 5) = ((𝑦 − 1) mod 5))
1211opeq2d 4833 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → ⟨0, (((2nd𝑋) − 1) mod 5)⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩)
1312eqeq2d 2744 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩ ↔ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩))
147, 9, 133orbi123d 1437 . . . . . . 7 ((2nd𝑋) = 𝑦 → ((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ↔ (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩)))
156eqeq2d 2744 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ↔ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩))
168eqeq2d 2744 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨1, (2nd𝑋)⟩ ↔ 𝐾 = ⟨1, 𝑦⟩))
1712eqeq2d 2744 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩ ↔ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩))
1815, 16, 173orbi123d 1437 . . . . . . 7 ((2nd𝑋) = 𝑦 → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ↔ (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩)))
1914, 18anbi12d 632 . . . . . 6 ((2nd𝑋) = 𝑦 → (((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩)) ↔ ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩))))
20 simpr 484 . . . . . . . . . . . . 13 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩)
21 simpl 482 . . . . . . . . . . . . 13 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩)
2220, 21neeq12d 2990 . . . . . . . . . . . 12 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → (𝐾𝐿 ↔ ⟨0, ((𝑦 + 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩))
23 eqid 2733 . . . . . . . . . . . . 13 ⟨0, ((𝑦 + 1) mod 5)⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩
24 eqneqall 2940 . . . . . . . . . . . . 13 (⟨0, ((𝑦 + 1) mod 5)⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩ → (⟨0, ((𝑦 + 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
2523, 24ax-mp 5 . . . . . . . . . . . 12 (⟨0, ((𝑦 + 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
2622, 25biimtrdi 253 . . . . . . . . . . 11 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
2726impd 410 . . . . . . . . . 10 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
2827ex 412 . . . . . . . . 9 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
29 5eluz3 12787 . . . . . . . . . . . . . . 15 5 ∈ (ℤ‘3)
30 pglem 48253 . . . . . . . . . . . . . . 15 2 ∈ (1..^(⌈‘(5 / 2)))
31 eqid 2733 . . . . . . . . . . . . . . . 16 (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2)))
32 eqid 2733 . . . . . . . . . . . . . . . 16 (0..^5) = (0..^5)
33 pgnbgreunbgr.g . . . . . . . . . . . . . . . 16 𝐺 = (5 gPetersenGr 2)
34 pgnbgreunbgr.e . . . . . . . . . . . . . . . 16 𝐸 = (Edg‘𝐺)
3531, 32, 33, 34gpgedgiov 48227 . . . . . . . . . . . . . . 15 (((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸𝑏 = 𝑦))
3629, 30, 35mpanl12 702 . . . . . . . . . . . . . 14 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ({⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸𝑏 = 𝑦))
37 opeq2 4827 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)
3837eqcoms 2741 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)
3936, 38biimtrdi 253 . . . . . . . . . . . . 13 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ({⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸 → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
4039adantld 490 . . . . . . . . . . . 12 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({⟨0, ((𝑦 + 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
41 preq1 4687 . . . . . . . . . . . . . . 15 (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → {𝐾, ⟨0, 𝑏⟩} = {⟨0, ((𝑦 + 1) mod 5)⟩, ⟨0, 𝑏⟩})
4241eleq1d 2818 . . . . . . . . . . . . . 14 (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨0, ((𝑦 + 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸))
43 preq2 4688 . . . . . . . . . . . . . . 15 (𝐿 = ⟨1, 𝑦⟩ → {⟨0, 𝑏⟩, 𝐿} = {⟨0, 𝑏⟩, ⟨1, 𝑦⟩})
4443eleq1d 2818 . . . . . . . . . . . . . 14 (𝐿 = ⟨1, 𝑦⟩ → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ {⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸))
4542, 44bi2anan9r 639 . . . . . . . . . . . . 13 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨0, ((𝑦 + 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸)))
4645imbi1d 341 . . . . . . . . . . . 12 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → ((({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩) ↔ (({⟨0, ((𝑦 + 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
4740, 46imbitrrid 246 . . . . . . . . . . 11 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
4847adantld 490 . . . . . . . . . 10 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
4948ex 412 . . . . . . . . 9 (𝐿 = ⟨1, 𝑦⟩ → (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
50 prcom 4686 . . . . . . . . . . . . . . 15 {⟨0, ((𝑦 + 1) mod 5)⟩, ⟨0, 𝑏⟩} = {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩}
5150eleq1i 2824 . . . . . . . . . . . . . 14 ({⟨0, ((𝑦 + 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸)
52 prcom 4686 . . . . . . . . . . . . . . 15 {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩} = {⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩}
5352eleq1i 2824 . . . . . . . . . . . . . 14 ({⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩} ∈ 𝐸 ↔ {⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸)
5451, 53anbi12ci 629 . . . . . . . . . . . . 13 (({⟨0, ((𝑦 + 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩} ∈ 𝐸) ↔ ({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸))
55 5nn 12222 . . . . . . . . . . . . . . . . 17 5 ∈ ℕ
5655nnzi 12506 . . . . . . . . . . . . . . . 16 5 ∈ ℤ
57 uzid 12757 . . . . . . . . . . . . . . . 16 (5 ∈ ℤ → 5 ∈ (ℤ‘5))
5856, 57ax-mp 5 . . . . . . . . . . . . . . 15 5 ∈ (ℤ‘5)
5931, 32, 33, 34gpgedg2ov 48228 . . . . . . . . . . . . . . 15 (((5 ∈ (ℤ‘5) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸) ↔ 𝑏 = 𝑦))
6058, 30, 59mpanl12 702 . . . . . . . . . . . . . 14 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸) ↔ 𝑏 = 𝑦))
61 equcomiv 2015 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦𝑦 = 𝑏)
6261opeq2d 4833 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)
6360, 62biimtrdi 253 . . . . . . . . . . . . 13 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
6454, 63biimtrid 242 . . . . . . . . . . . 12 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({⟨0, ((𝑦 + 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
65 preq2 4688 . . . . . . . . . . . . . . 15 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → {⟨0, 𝑏⟩, 𝐿} = {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩})
6665eleq1d 2818 . . . . . . . . . . . . . 14 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩} ∈ 𝐸))
6742, 66bi2anan9r 639 . . . . . . . . . . . . 13 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨0, ((𝑦 + 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩} ∈ 𝐸)))
6867imbi1d 341 . . . . . . . . . . . 12 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → ((({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩) ↔ (({⟨0, ((𝑦 + 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
6964, 68imbitrrid 246 . . . . . . . . . . 11 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
7069adantld 490 . . . . . . . . . 10 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
7170ex 412 . . . . . . . . 9 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
7228, 49, 713jaoi 1430 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) → (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
73 prcom 4686 . . . . . . . . . . . . . . 15 {⟨1, 𝑦⟩, ⟨0, 𝑏⟩} = {⟨0, 𝑏⟩, ⟨1, 𝑦⟩}
7473eleq1i 2824 . . . . . . . . . . . . . 14 ({⟨1, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸)
7574, 39biimtrid 242 . . . . . . . . . . . . 13 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ({⟨1, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
7675adantrd 491 . . . . . . . . . . . 12 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({⟨1, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
77 preq1 4687 . . . . . . . . . . . . . . 15 (𝐾 = ⟨1, 𝑦⟩ → {𝐾, ⟨0, 𝑏⟩} = {⟨1, 𝑦⟩, ⟨0, 𝑏⟩})
7877eleq1d 2818 . . . . . . . . . . . . . 14 (𝐾 = ⟨1, 𝑦⟩ → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨1, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸))
79 preq2 4688 . . . . . . . . . . . . . . 15 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → {⟨0, 𝑏⟩, 𝐿} = {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩})
8079eleq1d 2818 . . . . . . . . . . . . . 14 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸))
8178, 80bi2anan9r 639 . . . . . . . . . . . . 13 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨1, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸)))
8281imbi1d 341 . . . . . . . . . . . 12 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩) ↔ (({⟨1, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
8376, 82imbitrrid 246 . . . . . . . . . . 11 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
8483adantld 490 . . . . . . . . . 10 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
8584ex 412 . . . . . . . . 9 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → (𝐾 = ⟨1, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
86 simpr 484 . . . . . . . . . . . . 13 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → 𝐾 = ⟨1, 𝑦⟩)
87 simpl 482 . . . . . . . . . . . . 13 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → 𝐿 = ⟨1, 𝑦⟩)
8886, 87neeq12d 2990 . . . . . . . . . . . 12 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → (𝐾𝐿 ↔ ⟨1, 𝑦⟩ ≠ ⟨1, 𝑦⟩))
89 eqid 2733 . . . . . . . . . . . . 13 ⟨1, 𝑦⟩ = ⟨1, 𝑦
90 eqneqall 2940 . . . . . . . . . . . . 13 (⟨1, 𝑦⟩ = ⟨1, 𝑦⟩ → (⟨1, 𝑦⟩ ≠ ⟨1, 𝑦⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
9189, 90ax-mp 5 . . . . . . . . . . . 12 (⟨1, 𝑦⟩ ≠ ⟨1, 𝑦⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
9288, 91biimtrdi 253 . . . . . . . . . . 11 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
9392impd 410 . . . . . . . . . 10 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
9493ex 412 . . . . . . . . 9 (𝐿 = ⟨1, 𝑦⟩ → (𝐾 = ⟨1, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
9575adantrd 491 . . . . . . . . . . . 12 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({⟨1, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
9677adantl 481 . . . . . . . . . . . . . . 15 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → {𝐾, ⟨0, 𝑏⟩} = {⟨1, 𝑦⟩, ⟨0, 𝑏⟩})
9796eleq1d 2818 . . . . . . . . . . . . . 14 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨1, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸))
9865adantr 480 . . . . . . . . . . . . . . 15 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → {⟨0, 𝑏⟩, 𝐿} = {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩})
9998eleq1d 2818 . . . . . . . . . . . . . 14 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩} ∈ 𝐸))
10097, 99anbi12d 632 . . . . . . . . . . . . 13 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨1, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩} ∈ 𝐸)))
101100imbi1d 341 . . . . . . . . . . . 12 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩) ↔ (({⟨1, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 − 1) mod 5)⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
10295, 101imbitrrid 246 . . . . . . . . . . 11 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
103102adantld 490 . . . . . . . . . 10 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
104103ex 412 . . . . . . . . 9 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → (𝐾 = ⟨1, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
10585, 94, 1043jaoi 1430 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) → (𝐾 = ⟨1, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
10660, 38biimtrdi 253 . . . . . . . . . . . . 13 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
107106adantl 481 . . . . . . . . . . . 12 ((⟨0, ((𝑦 − 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
108107a1i 11 . . . . . . . . . . 11 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((⟨0, ((𝑦 − 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
109 simpl 482 . . . . . . . . . . . . . 14 ((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩) → 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩)
110 simpr 484 . . . . . . . . . . . . . 14 ((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩) → 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩)
111109, 110neeq12d 2990 . . . . . . . . . . . . 13 ((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩) → (𝐾𝐿 ↔ ⟨0, ((𝑦 − 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩))
112111ancoms 458 . . . . . . . . . . . 12 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → (𝐾𝐿 ↔ ⟨0, ((𝑦 − 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩))
113112anbi1d 631 . . . . . . . . . . 11 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ↔ (⟨0, ((𝑦 − 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)))))
114 preq1 4687 . . . . . . . . . . . . . 14 (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → {𝐾, ⟨0, 𝑏⟩} = {⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩})
115114eleq1d 2818 . . . . . . . . . . . . 13 (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸))
116115, 80bi2anan9r 639 . . . . . . . . . . . 12 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸)))
117116imbi1d 341 . . . . . . . . . . 11 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩) ↔ (({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨0, ((𝑦 + 1) mod 5)⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
118108, 113, 1173imtr4d 294 . . . . . . . . . 10 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
119118ex 412 . . . . . . . . 9 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
12039adantld 490 . . . . . . . . . . . 12 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
121120adantl 481 . . . . . . . . . . 11 ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
122114adantl 481 . . . . . . . . . . . . . 14 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → {𝐾, ⟨0, 𝑏⟩} = {⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩})
123122eleq1d 2818 . . . . . . . . . . . . 13 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸))
12444adantr 480 . . . . . . . . . . . . 13 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ {⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸))
125123, 124anbi12d 632 . . . . . . . . . . . 12 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸)))
126125imbi1d 341 . . . . . . . . . . 11 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩) ↔ (({⟨0, ((𝑦 − 1) mod 5)⟩, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, ⟨1, 𝑦⟩} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
127121, 126imbitrrid 246 . . . . . . . . . 10 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
128127ex 412 . . . . . . . . 9 (𝐿 = ⟨1, 𝑦⟩ → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
129 eqeq2 2745 . . . . . . . . . . 11 (⟨0, ((𝑦 − 1) mod 5)⟩ = 𝐿 → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ↔ 𝐾 = 𝐿))
130129eqcoms 2741 . . . . . . . . . 10 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ↔ 𝐾 = 𝐿))
131 eqneqall 2940 . . . . . . . . . . 11 (𝐾 = 𝐿 → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
132131impd 410 . . . . . . . . . 10 (𝐾 = 𝐿 → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
133130, 132biimtrdi 253 . . . . . . . . 9 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
134119, 128, 1333jaoi 1430 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
13572, 105, 1343jaod 1431 . . . . . . 7 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
136135imp 406 . . . . . 6 (((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩)) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
13719, 136biimtrdi 253 . . . . 5 ((2nd𝑋) = 𝑦 → (((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩)) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
1383, 137syl 17 . . . 4 (𝑋 = ⟨0, 𝑦⟩ → (((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩)) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
139 eqeq1 2737 . . . . . 6 (𝑋 = ⟨0, 𝑦⟩ → (𝑋 = ⟨0, 𝑏⟩ ↔ ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))
140139imbi2d 340 . . . . 5 (𝑋 = ⟨0, 𝑦⟩ → ((({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩) ↔ (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩)))
141140imbi2d 340 . . . 4 (𝑋 = ⟨0, 𝑦⟩ → (((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)) ↔ ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → ⟨0, 𝑦⟩ = ⟨0, 𝑏⟩))))
142138, 141sylibrd 259 . . 3 (𝑋 = ⟨0, 𝑦⟩ → (((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩)) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
143142adantl 481 . 2 ((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) → (((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩)) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
144143expdcom 414 1 ((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2113  wne 2929  {cpr 4579  cop 4583  cfv 6489  (class class class)co 7355  2nd c2nd 7929  0cc0 11017  1c1 11018   + caddc 11020  cmin 11355   / cdiv 11785  2c2 12191  3c3 12192  5c5 12194  cz 12479  cuz 12742  ..^cfzo 13561  cceil 13702   mod cmo 13780  Vtxcvtx 28995  Edgcedg 29046   NeighbVtx cnbgr 29331   gPetersenGr cgpg 48202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-ico 13258  df-fz 13415  df-fzo 13562  df-fl 13703  df-ceil 13704  df-mod 13781  df-hash 14245  df-dvds 16171  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-edgf 28988  df-vtx 28997  df-iedg 28998  df-edg 29047  df-umgr 29082  df-usgr 29150  df-gpg 48203
This theorem is referenced by:  pgnbgreunbgrlem3  48280
  Copyright terms: Public domain W3C validator