Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hilims | Structured version Visualization version GIF version |
Description: Hilbert space distance metric. (Contributed by NM, 13-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hilims.1 | ⊢ ℋ = (BaseSet‘𝑈) |
hilims.2 | ⊢ +ℎ = ( +𝑣 ‘𝑈) |
hilims.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
hilims.5 | ⊢ ·ih = (·𝑖OLD‘𝑈) |
hilims.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
hilims.9 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
hilims | ⊢ 𝐷 = (normℎ ∘ −ℎ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilims.1 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) | |
2 | hilims.2 | . . 3 ⊢ +ℎ = ( +𝑣 ‘𝑈) | |
3 | hilims.3 | . . 3 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | |
4 | hilims.5 | . . 3 ⊢ ·ih = (·𝑖OLD‘𝑈) | |
5 | hilims.9 | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
6 | 1, 2, 3, 4, 5 | hilhhi 29060 | . 2 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
7 | hilims.8 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
8 | 6, 7 | hhims2 29069 | 1 ⊢ 𝐷 = (normℎ ∘ −ℎ ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 ∘ ccom 5532 ‘cfv 6340 NrmCVeccnv 28480 +𝑣 cpv 28481 BaseSetcba 28482 ·𝑠OLD cns 28483 IndMetcims 28487 ·𝑖OLDcdip 28596 ℋchba 28815 +ℎ cva 28816 ·ℎ csm 28817 ·ih csp 28818 normℎcno 28819 −ℎ cmv 28821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-hilex 28895 ax-hfvadd 28896 ax-hvcom 28897 ax-hvass 28898 ax-hv0cl 28899 ax-hvaddid 28900 ax-hfvmul 28901 ax-hvmulid 28902 ax-hvmulass 28903 ax-hvdistr1 28904 ax-hvdistr2 28905 ax-hvmul0 28906 ax-hfi 28975 ax-his1 28978 ax-his2 28979 ax-his3 28980 ax-his4 28981 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-sup 8952 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-fz 12953 df-fzo 13096 df-seq 13432 df-exp 13493 df-hash 13754 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-clim 14906 df-sum 15104 df-grpo 28389 df-gid 28390 df-ginv 28391 df-gdiv 28392 df-ablo 28441 df-vc 28455 df-nv 28488 df-va 28491 df-ba 28492 df-sm 28493 df-0v 28494 df-vs 28495 df-nmcv 28496 df-ims 28497 df-dip 28597 df-hnorm 28864 df-hvsub 28867 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |