Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cjnpoly Structured version   Visualization version   GIF version

Theorem cjnpoly 46874
Description: Complex conjugation operator is not a polynomial with complex coefficients. Indeed; if it was, then multiplying 𝑥 conjugate by 𝑥 itself and adding 1 would yield a nowhere-zero non-constant polynomial, contrary to the fta 27006. (Contributed by Ender Ting, 8-Dec-2025.)
Assertion
Ref Expression
cjnpoly ¬ ∗ ∈ (Poly‘ℂ)

Proof of Theorem cjnpoly
StepHypRef Expression
1 cnex 11109 . . . . . . . 8 ℂ ∈ V
2 1ex 11130 . . . . . . . . . 10 1 ∈ V
3 fconstmpt 5685 . . . . . . . . . 10 (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1)
42, 3fnmpti 6629 . . . . . . . . 9 (ℂ × {1}) Fn ℂ
5 fnresi 6615 . . . . . . . . . . . . 13 ( I ↾ ℂ) Fn ℂ
6 df-idp 26110 . . . . . . . . . . . . . 14 Xp = ( I ↾ ℂ)
76fneq1i 6583 . . . . . . . . . . . . 13 (Xp Fn ℂ ↔ ( I ↾ ℂ) Fn ℂ)
85, 7mpbir 231 . . . . . . . . . . . 12 Xp Fn ℂ
98a1i 11 . . . . . . . . . . 11 (⊤ → Xp Fn ℂ)
10 cjf 15029 . . . . . . . . . . . . 13 ∗:ℂ⟶ℂ
11 ffn 6656 . . . . . . . . . . . . 13 (∗:ℂ⟶ℂ → ∗ Fn ℂ)
1210, 11ax-mp 5 . . . . . . . . . . . 12 ∗ Fn ℂ
1312a1i 11 . . . . . . . . . . 11 (⊤ → ∗ Fn ℂ)
141a1i 11 . . . . . . . . . . 11 (⊤ → ℂ ∈ V)
15 inidm 4180 . . . . . . . . . . 11 (ℂ ∩ ℂ) = ℂ
169, 13, 14, 14, 15offn 7630 . . . . . . . . . 10 (⊤ → (Xpf · ∗) Fn ℂ)
1716mptru 1547 . . . . . . . . 9 (Xpf · ∗) Fn ℂ
18 fnfvof 7634 . . . . . . . . 9 ((((ℂ × {1}) Fn ℂ ∧ (Xpf · ∗) Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑥 ∈ ℂ)) → (((ℂ × {1}) ∘f + (Xpf · ∗))‘𝑥) = (((ℂ × {1})‘𝑥) + ((Xpf · ∗)‘𝑥)))
194, 17, 18mpanl12 702 . . . . . . . 8 ((ℂ ∈ V ∧ 𝑥 ∈ ℂ) → (((ℂ × {1}) ∘f + (Xpf · ∗))‘𝑥) = (((ℂ × {1})‘𝑥) + ((Xpf · ∗)‘𝑥)))
201, 19mpan 690 . . . . . . 7 (𝑥 ∈ ℂ → (((ℂ × {1}) ∘f + (Xpf · ∗))‘𝑥) = (((ℂ × {1})‘𝑥) + ((Xpf · ∗)‘𝑥)))
212fvconst2 7144 . . . . . . . 8 (𝑥 ∈ ℂ → ((ℂ × {1})‘𝑥) = 1)
2221oveq1d 7368 . . . . . . 7 (𝑥 ∈ ℂ → (((ℂ × {1})‘𝑥) + ((Xpf · ∗)‘𝑥)) = (1 + ((Xpf · ∗)‘𝑥)))
2320, 22eqtrd 2764 . . . . . 6 (𝑥 ∈ ℂ → (((ℂ × {1}) ∘f + (Xpf · ∗))‘𝑥) = (1 + ((Xpf · ∗)‘𝑥)))
24 fnfvof 7634 . . . . . . . . . 10 (((Xp Fn ℂ ∧ ∗ Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑥 ∈ ℂ)) → ((Xpf · ∗)‘𝑥) = ((Xp𝑥) · (∗‘𝑥)))
258, 12, 24mpanl12 702 . . . . . . . . 9 ((ℂ ∈ V ∧ 𝑥 ∈ ℂ) → ((Xpf · ∗)‘𝑥) = ((Xp𝑥) · (∗‘𝑥)))
261, 25mpan 690 . . . . . . . 8 (𝑥 ∈ ℂ → ((Xpf · ∗)‘𝑥) = ((Xp𝑥) · (∗‘𝑥)))
276fveq1i 6827 . . . . . . . . . . 11 (Xp𝑥) = (( I ↾ ℂ)‘𝑥)
28 fvres 6845 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (( I ↾ ℂ)‘𝑥) = ( I ‘𝑥))
2927, 28eqtrid 2776 . . . . . . . . . 10 (𝑥 ∈ ℂ → (Xp𝑥) = ( I ‘𝑥))
30 fvi 6903 . . . . . . . . . 10 (𝑥 ∈ ℂ → ( I ‘𝑥) = 𝑥)
3129, 30eqtrd 2764 . . . . . . . . 9 (𝑥 ∈ ℂ → (Xp𝑥) = 𝑥)
3231oveq1d 7368 . . . . . . . 8 (𝑥 ∈ ℂ → ((Xp𝑥) · (∗‘𝑥)) = (𝑥 · (∗‘𝑥)))
3326, 32eqtrd 2764 . . . . . . 7 (𝑥 ∈ ℂ → ((Xpf · ∗)‘𝑥) = (𝑥 · (∗‘𝑥)))
3433oveq2d 7369 . . . . . 6 (𝑥 ∈ ℂ → (1 + ((Xpf · ∗)‘𝑥)) = (1 + (𝑥 · (∗‘𝑥))))
3523, 34eqtrd 2764 . . . . 5 (𝑥 ∈ ℂ → (((ℂ × {1}) ∘f + (Xpf · ∗))‘𝑥) = (1 + (𝑥 · (∗‘𝑥))))
36 1red 11135 . . . . . . 7 (𝑥 ∈ ℂ → 1 ∈ ℝ)
37 cjmulrcl 15069 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥 · (∗‘𝑥)) ∈ ℝ)
38 0lt1 11660 . . . . . . . 8 0 < 1
3938a1i 11 . . . . . . 7 (𝑥 ∈ ℂ → 0 < 1)
40 cjmulge0 15071 . . . . . . 7 (𝑥 ∈ ℂ → 0 ≤ (𝑥 · (∗‘𝑥)))
4136, 37, 39, 40addgtge0d 11712 . . . . . 6 (𝑥 ∈ ℂ → 0 < (1 + (𝑥 · (∗‘𝑥))))
4241gt0ne0d 11702 . . . . 5 (𝑥 ∈ ℂ → (1 + (𝑥 · (∗‘𝑥))) ≠ 0)
4335, 42eqnetrd 2992 . . . 4 (𝑥 ∈ ℂ → (((ℂ × {1}) ∘f + (Xpf · ∗))‘𝑥) ≠ 0)
4443neneqd 2930 . . 3 (𝑥 ∈ ℂ → ¬ (((ℂ × {1}) ∘f + (Xpf · ∗))‘𝑥) = 0)
4544nrex 3057 . 2 ¬ ∃𝑥 ∈ ℂ (((ℂ × {1}) ∘f + (Xpf · ∗))‘𝑥) = 0
46 ssid 3960 . . . . 5 ℂ ⊆ ℂ
47 ax-1cn 11086 . . . . 5 1 ∈ ℂ
48 plyconst 26127 . . . . 5 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → (ℂ × {1}) ∈ (Poly‘ℂ))
4946, 47, 48mp2an 692 . . . 4 (ℂ × {1}) ∈ (Poly‘ℂ)
50 plyid 26130 . . . . . 6 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
5146, 47, 50mp2an 692 . . . . 5 Xp ∈ (Poly‘ℂ)
52 plymulcl 26142 . . . . 5 ((Xp ∈ (Poly‘ℂ) ∧ ∗ ∈ (Poly‘ℂ)) → (Xpf · ∗) ∈ (Poly‘ℂ))
5351, 52mpan 690 . . . 4 (∗ ∈ (Poly‘ℂ) → (Xpf · ∗) ∈ (Poly‘ℂ))
54 plyaddcl 26141 . . . 4 (((ℂ × {1}) ∈ (Poly‘ℂ) ∧ (Xpf · ∗) ∈ (Poly‘ℂ)) → ((ℂ × {1}) ∘f + (Xpf · ∗)) ∈ (Poly‘ℂ))
5549, 53, 54sylancr 587 . . 3 (∗ ∈ (Poly‘ℂ) → ((ℂ × {1}) ∘f + (Xpf · ∗)) ∈ (Poly‘ℂ))
56 dgrcl 26154 . . . . . 6 (∗ ∈ (Poly‘ℂ) → (deg‘∗) ∈ ℕ0)
57 nn0p1nn 12441 . . . . . . 7 ((deg‘∗) ∈ ℕ0 → ((deg‘∗) + 1) ∈ ℕ)
58 nn0cn 12412 . . . . . . . . 9 ((deg‘∗) ∈ ℕ0 → (deg‘∗) ∈ ℂ)
59 1cnd 11129 . . . . . . . . 9 ((deg‘∗) ∈ ℕ0 → 1 ∈ ℂ)
6058, 59addcomd 11336 . . . . . . . 8 ((deg‘∗) ∈ ℕ0 → ((deg‘∗) + 1) = (1 + (deg‘∗)))
6160eleq1d 2813 . . . . . . 7 ((deg‘∗) ∈ ℕ0 → (((deg‘∗) + 1) ∈ ℕ ↔ (1 + (deg‘∗)) ∈ ℕ))
6257, 61mpbid 232 . . . . . 6 ((deg‘∗) ∈ ℕ0 → (1 + (deg‘∗)) ∈ ℕ)
6356, 62syl 17 . . . . 5 (∗ ∈ (Poly‘ℂ) → (1 + (deg‘∗)) ∈ ℕ)
64 1re 11134 . . . . . . . . . 10 1 ∈ ℝ
65 cjre 15064 . . . . . . . . . 10 (1 ∈ ℝ → (∗‘1) = 1)
6664, 65ax-mp 5 . . . . . . . . 9 (∗‘1) = 1
67 ax-1ne0 11097 . . . . . . . . 9 1 ≠ 0
6866, 67eqnetri 2995 . . . . . . . 8 (∗‘1) ≠ 0
69 ne0p 26128 . . . . . . . 8 ((1 ∈ ℂ ∧ (∗‘1) ≠ 0) → ∗ ≠ 0𝑝)
7047, 68, 69mp2an 692 . . . . . . 7 ∗ ≠ 0𝑝
716fveq1i 6827 . . . . . . . . . . . . 13 (Xp‘1) = (( I ↾ ℂ)‘1)
72 fvres 6845 . . . . . . . . . . . . . 14 (1 ∈ ℂ → (( I ↾ ℂ)‘1) = ( I ‘1))
7347, 72ax-mp 5 . . . . . . . . . . . . 13 (( I ↾ ℂ)‘1) = ( I ‘1)
7471, 73eqtri 2752 . . . . . . . . . . . 12 (Xp‘1) = ( I ‘1)
75 fvi 6903 . . . . . . . . . . . . 13 (1 ∈ V → ( I ‘1) = 1)
762, 75ax-mp 5 . . . . . . . . . . . 12 ( I ‘1) = 1
7774, 76eqtri 2752 . . . . . . . . . . 11 (Xp‘1) = 1
7877, 67eqnetri 2995 . . . . . . . . . 10 (Xp‘1) ≠ 0
79 ne0p 26128 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (Xp‘1) ≠ 0) → Xp ≠ 0𝑝)
8047, 78, 79mp2an 692 . . . . . . . . 9 Xp ≠ 0𝑝
8151, 80pm3.2i 470 . . . . . . . 8 (Xp ∈ (Poly‘ℂ) ∧ Xp ≠ 0𝑝)
82 dgrid 26186 . . . . . . . . . 10 (deg‘Xp) = 1
8382eqcomi 2738 . . . . . . . . 9 1 = (deg‘Xp)
84 eqid 2729 . . . . . . . . 9 (deg‘∗) = (deg‘∗)
8583, 84dgrmul 26192 . . . . . . . 8 (((Xp ∈ (Poly‘ℂ) ∧ Xp ≠ 0𝑝) ∧ (∗ ∈ (Poly‘ℂ) ∧ ∗ ≠ 0𝑝)) → (deg‘(Xpf · ∗)) = (1 + (deg‘∗)))
8681, 85mpan 690 . . . . . . 7 ((∗ ∈ (Poly‘ℂ) ∧ ∗ ≠ 0𝑝) → (deg‘(Xpf · ∗)) = (1 + (deg‘∗)))
8770, 86mpan2 691 . . . . . 6 (∗ ∈ (Poly‘ℂ) → (deg‘(Xpf · ∗)) = (1 + (deg‘∗)))
8887eleq1d 2813 . . . . 5 (∗ ∈ (Poly‘ℂ) → ((deg‘(Xpf · ∗)) ∈ ℕ ↔ (1 + (deg‘∗)) ∈ ℕ))
8963, 88mpbird 257 . . . 4 (∗ ∈ (Poly‘ℂ) → (deg‘(Xpf · ∗)) ∈ ℕ)
9049a1i 11 . . . . . . 7 (∗ ∈ (Poly‘ℂ) → (ℂ × {1}) ∈ (Poly‘ℂ))
9189nngt0d 12195 . . . . . . 7 (∗ ∈ (Poly‘ℂ) → 0 < (deg‘(Xpf · ∗)))
92 0dgr 26166 . . . . . . . . . 10 (1 ∈ ℂ → (deg‘(ℂ × {1})) = 0)
9347, 92ax-mp 5 . . . . . . . . 9 (deg‘(ℂ × {1})) = 0
9493eqcomi 2738 . . . . . . . 8 0 = (deg‘(ℂ × {1}))
95 eqid 2729 . . . . . . . 8 (deg‘(Xpf · ∗)) = (deg‘(Xpf · ∗))
9694, 95dgradd2 26190 . . . . . . 7 (((ℂ × {1}) ∈ (Poly‘ℂ) ∧ (Xpf · ∗) ∈ (Poly‘ℂ) ∧ 0 < (deg‘(Xpf · ∗))) → (deg‘((ℂ × {1}) ∘f + (Xpf · ∗))) = (deg‘(Xpf · ∗)))
9790, 53, 91, 96syl3anc 1373 . . . . . 6 (∗ ∈ (Poly‘ℂ) → (deg‘((ℂ × {1}) ∘f + (Xpf · ∗))) = (deg‘(Xpf · ∗)))
9897eleq1d 2813 . . . . 5 (∗ ∈ (Poly‘ℂ) → ((deg‘((ℂ × {1}) ∘f + (Xpf · ∗))) ∈ ℕ ↔ (deg‘(Xpf · ∗)) ∈ ℕ))
9998biimprd 248 . . . 4 (∗ ∈ (Poly‘ℂ) → ((deg‘(Xpf · ∗)) ∈ ℕ → (deg‘((ℂ × {1}) ∘f + (Xpf · ∗))) ∈ ℕ))
10089, 99mpd 15 . . 3 (∗ ∈ (Poly‘ℂ) → (deg‘((ℂ × {1}) ∘f + (Xpf · ∗))) ∈ ℕ)
101 fta 27006 . . 3 ((((ℂ × {1}) ∘f + (Xpf · ∗)) ∈ (Poly‘ℂ) ∧ (deg‘((ℂ × {1}) ∘f + (Xpf · ∗))) ∈ ℕ) → ∃𝑥 ∈ ℂ (((ℂ × {1}) ∘f + (Xpf · ∗))‘𝑥) = 0)
10255, 100, 101syl2anc 584 . 2 (∗ ∈ (Poly‘ℂ) → ∃𝑥 ∈ ℂ (((ℂ × {1}) ∘f + (Xpf · ∗))‘𝑥) = 0)
10345, 102mto 197 1 ¬ ∗ ∈ (Poly‘ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wrex 3053  Vcvv 3438  wss 3905  {csn 4579   class class class wbr 5095   I cid 5517   × cxp 5621  cres 5625   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cn 12146  0cn0 12402  ccj 15021  0𝑝c0p 25586  Polycply 26105  Xpcidp 26106  degcdgr 26108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-0p 25587  df-limc 25783  df-dv 25784  df-ply 26109  df-idp 26110  df-coe 26111  df-dgr 26112  df-log 26481  df-cxp 26482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator