Proof of Theorem cjnpoly
| Step | Hyp | Ref
| Expression |
| 1 | | cnex 11149 |
. . . . . . . 8
⊢ ℂ
∈ V |
| 2 | | 1ex 11170 |
. . . . . . . . . 10
⊢ 1 ∈
V |
| 3 | | fconstmpt 5700 |
. . . . . . . . . 10
⊢ (ℂ
× {1}) = (𝑥 ∈
ℂ ↦ 1) |
| 4 | 2, 3 | fnmpti 6661 |
. . . . . . . . 9
⊢ (ℂ
× {1}) Fn ℂ |
| 5 | | fnresi 6647 |
. . . . . . . . . . . . 13
⊢ ( I
↾ ℂ) Fn ℂ |
| 6 | | df-idp 26094 |
. . . . . . . . . . . . . 14
⊢
Xp = ( I ↾ ℂ) |
| 7 | 6 | fneq1i 6615 |
. . . . . . . . . . . . 13
⊢
(Xp Fn ℂ ↔ ( I ↾ ℂ) Fn
ℂ) |
| 8 | 5, 7 | mpbir 231 |
. . . . . . . . . . . 12
⊢
Xp Fn ℂ |
| 9 | 8 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ Xp Fn ℂ) |
| 10 | | cjf 15070 |
. . . . . . . . . . . . 13
⊢
∗:ℂ⟶ℂ |
| 11 | | ffn 6688 |
. . . . . . . . . . . . 13
⊢
(∗:ℂ⟶ℂ → ∗ Fn
ℂ) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ∗
Fn ℂ |
| 13 | 12 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ ∗ Fn ℂ) |
| 14 | 1 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ ℂ ∈ V) |
| 15 | | inidm 4190 |
. . . . . . . . . . 11
⊢ (ℂ
∩ ℂ) = ℂ |
| 16 | 9, 13, 14, 14, 15 | offn 7666 |
. . . . . . . . . 10
⊢ (⊤
→ (Xp ∘f · ∗) Fn
ℂ) |
| 17 | 16 | mptru 1547 |
. . . . . . . . 9
⊢
(Xp ∘f · ∗) Fn
ℂ |
| 18 | | fnfvof 7670 |
. . . . . . . . 9
⊢
((((ℂ × {1}) Fn ℂ ∧ (Xp
∘f · ∗) Fn ℂ) ∧ (ℂ ∈ V
∧ 𝑥 ∈ ℂ))
→ (((ℂ × {1}) ∘f + (Xp
∘f · ∗))‘𝑥) = (((ℂ × {1})‘𝑥) + ((Xp
∘f · ∗)‘𝑥))) |
| 19 | 4, 17, 18 | mpanl12 702 |
. . . . . . . 8
⊢ ((ℂ
∈ V ∧ 𝑥 ∈
ℂ) → (((ℂ × {1}) ∘f +
(Xp ∘f · ∗))‘𝑥) = (((ℂ ×
{1})‘𝑥) +
((Xp ∘f · ∗)‘𝑥))) |
| 20 | 1, 19 | mpan 690 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ →
(((ℂ × {1}) ∘f + (Xp
∘f · ∗))‘𝑥) = (((ℂ × {1})‘𝑥) + ((Xp
∘f · ∗)‘𝑥))) |
| 21 | 2 | fvconst2 7178 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → ((ℂ
× {1})‘𝑥) =
1) |
| 22 | 21 | oveq1d 7402 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ →
(((ℂ × {1})‘𝑥) + ((Xp
∘f · ∗)‘𝑥)) = (1 + ((Xp
∘f · ∗)‘𝑥))) |
| 23 | 20, 22 | eqtrd 2764 |
. . . . . 6
⊢ (𝑥 ∈ ℂ →
(((ℂ × {1}) ∘f + (Xp
∘f · ∗))‘𝑥) = (1 + ((Xp
∘f · ∗)‘𝑥))) |
| 24 | | fnfvof 7670 |
. . . . . . . . . 10
⊢
(((Xp Fn ℂ ∧ ∗ Fn ℂ) ∧
(ℂ ∈ V ∧ 𝑥
∈ ℂ)) → ((Xp ∘f ·
∗)‘𝑥) =
((Xp‘𝑥) · (∗‘𝑥))) |
| 25 | 8, 12, 24 | mpanl12 702 |
. . . . . . . . 9
⊢ ((ℂ
∈ V ∧ 𝑥 ∈
ℂ) → ((Xp ∘f ·
∗)‘𝑥) =
((Xp‘𝑥) · (∗‘𝑥))) |
| 26 | 1, 25 | mpan 690 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ →
((Xp ∘f · ∗)‘𝑥) =
((Xp‘𝑥) · (∗‘𝑥))) |
| 27 | 6 | fveq1i 6859 |
. . . . . . . . . . 11
⊢
(Xp‘𝑥) = (( I ↾ ℂ)‘𝑥) |
| 28 | | fvres 6877 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ → (( I
↾ ℂ)‘𝑥) =
( I ‘𝑥)) |
| 29 | 27, 28 | eqtrid 2776 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ →
(Xp‘𝑥) = ( I ‘𝑥)) |
| 30 | | fvi 6937 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ → ( I
‘𝑥) = 𝑥) |
| 31 | 29, 30 | eqtrd 2764 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ →
(Xp‘𝑥) = 𝑥) |
| 32 | 31 | oveq1d 7402 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ →
((Xp‘𝑥) · (∗‘𝑥)) = (𝑥 · (∗‘𝑥))) |
| 33 | 26, 32 | eqtrd 2764 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ →
((Xp ∘f · ∗)‘𝑥) = (𝑥 · (∗‘𝑥))) |
| 34 | 33 | oveq2d 7403 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → (1 +
((Xp ∘f · ∗)‘𝑥)) = (1 + (𝑥 · (∗‘𝑥)))) |
| 35 | 23, 34 | eqtrd 2764 |
. . . . 5
⊢ (𝑥 ∈ ℂ →
(((ℂ × {1}) ∘f + (Xp
∘f · ∗))‘𝑥) = (1 + (𝑥 · (∗‘𝑥)))) |
| 36 | | 1red 11175 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → 1 ∈
ℝ) |
| 37 | | cjmulrcl 15110 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → (𝑥 · (∗‘𝑥)) ∈
ℝ) |
| 38 | | 0lt1 11700 |
. . . . . . . 8
⊢ 0 <
1 |
| 39 | 38 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → 0 <
1) |
| 40 | | cjmulge0 15112 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → 0 ≤
(𝑥 ·
(∗‘𝑥))) |
| 41 | 36, 37, 39, 40 | addgtge0d 11752 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → 0 < (1
+ (𝑥 ·
(∗‘𝑥)))) |
| 42 | 41 | gt0ne0d 11742 |
. . . . 5
⊢ (𝑥 ∈ ℂ → (1 +
(𝑥 ·
(∗‘𝑥))) ≠
0) |
| 43 | 35, 42 | eqnetrd 2992 |
. . . 4
⊢ (𝑥 ∈ ℂ →
(((ℂ × {1}) ∘f + (Xp
∘f · ∗))‘𝑥) ≠ 0) |
| 44 | 43 | neneqd 2930 |
. . 3
⊢ (𝑥 ∈ ℂ → ¬
(((ℂ × {1}) ∘f + (Xp
∘f · ∗))‘𝑥) = 0) |
| 45 | 44 | nrex 3057 |
. 2
⊢ ¬
∃𝑥 ∈ ℂ
(((ℂ × {1}) ∘f + (Xp
∘f · ∗))‘𝑥) = 0 |
| 46 | | ssid 3969 |
. . . . 5
⊢ ℂ
⊆ ℂ |
| 47 | | ax-1cn 11126 |
. . . . 5
⊢ 1 ∈
ℂ |
| 48 | | plyconst 26111 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ 1 ∈ ℂ) → (ℂ × {1}) ∈
(Poly‘ℂ)) |
| 49 | 46, 47, 48 | mp2an 692 |
. . . 4
⊢ (ℂ
× {1}) ∈ (Poly‘ℂ) |
| 50 | | plyid 26114 |
. . . . . 6
⊢ ((ℂ
⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈
(Poly‘ℂ)) |
| 51 | 46, 47, 50 | mp2an 692 |
. . . . 5
⊢
Xp ∈ (Poly‘ℂ) |
| 52 | | plymulcl 26126 |
. . . . 5
⊢
((Xp ∈ (Poly‘ℂ) ∧ ∗ ∈
(Poly‘ℂ)) → (Xp ∘f ·
∗) ∈ (Poly‘ℂ)) |
| 53 | 51, 52 | mpan 690 |
. . . 4
⊢ (∗
∈ (Poly‘ℂ) → (Xp ∘f
· ∗) ∈ (Poly‘ℂ)) |
| 54 | | plyaddcl 26125 |
. . . 4
⊢
(((ℂ × {1}) ∈ (Poly‘ℂ) ∧
(Xp ∘f · ∗) ∈
(Poly‘ℂ)) → ((ℂ × {1}) ∘f +
(Xp ∘f · ∗)) ∈
(Poly‘ℂ)) |
| 55 | 49, 53, 54 | sylancr 587 |
. . 3
⊢ (∗
∈ (Poly‘ℂ) → ((ℂ × {1}) ∘f +
(Xp ∘f · ∗)) ∈
(Poly‘ℂ)) |
| 56 | | dgrcl 26138 |
. . . . . 6
⊢ (∗
∈ (Poly‘ℂ) → (deg‘∗) ∈
ℕ0) |
| 57 | | nn0p1nn 12481 |
. . . . . . 7
⊢
((deg‘∗) ∈ ℕ0 →
((deg‘∗) + 1) ∈ ℕ) |
| 58 | | nn0cn 12452 |
. . . . . . . . 9
⊢
((deg‘∗) ∈ ℕ0 →
(deg‘∗) ∈ ℂ) |
| 59 | | 1cnd 11169 |
. . . . . . . . 9
⊢
((deg‘∗) ∈ ℕ0 → 1 ∈
ℂ) |
| 60 | 58, 59 | addcomd 11376 |
. . . . . . . 8
⊢
((deg‘∗) ∈ ℕ0 →
((deg‘∗) + 1) = (1 + (deg‘∗))) |
| 61 | 60 | eleq1d 2813 |
. . . . . . 7
⊢
((deg‘∗) ∈ ℕ0 →
(((deg‘∗) + 1) ∈ ℕ ↔ (1 + (deg‘∗))
∈ ℕ)) |
| 62 | 57, 61 | mpbid 232 |
. . . . . 6
⊢
((deg‘∗) ∈ ℕ0 → (1 +
(deg‘∗)) ∈ ℕ) |
| 63 | 56, 62 | syl 17 |
. . . . 5
⊢ (∗
∈ (Poly‘ℂ) → (1 + (deg‘∗)) ∈
ℕ) |
| 64 | | 1re 11174 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
| 65 | | cjre 15105 |
. . . . . . . . . 10
⊢ (1 ∈
ℝ → (∗‘1) = 1) |
| 66 | 64, 65 | ax-mp 5 |
. . . . . . . . 9
⊢
(∗‘1) = 1 |
| 67 | | ax-1ne0 11137 |
. . . . . . . . 9
⊢ 1 ≠
0 |
| 68 | 66, 67 | eqnetri 2995 |
. . . . . . . 8
⊢
(∗‘1) ≠ 0 |
| 69 | | ne0p 26112 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ (∗‘1) ≠ 0) → ∗ ≠
0𝑝) |
| 70 | 47, 68, 69 | mp2an 692 |
. . . . . . 7
⊢ ∗
≠ 0𝑝 |
| 71 | 6 | fveq1i 6859 |
. . . . . . . . . . . . 13
⊢
(Xp‘1) = (( I ↾
ℂ)‘1) |
| 72 | | fvres 6877 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℂ → (( I ↾ ℂ)‘1) = ( I ‘1)) |
| 73 | 47, 72 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (( I
↾ ℂ)‘1) = ( I ‘1) |
| 74 | 71, 73 | eqtri 2752 |
. . . . . . . . . . . 12
⊢
(Xp‘1) = ( I ‘1) |
| 75 | | fvi 6937 |
. . . . . . . . . . . . 13
⊢ (1 ∈
V → ( I ‘1) = 1) |
| 76 | 2, 75 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ( I
‘1) = 1 |
| 77 | 74, 76 | eqtri 2752 |
. . . . . . . . . . 11
⊢
(Xp‘1) = 1 |
| 78 | 77, 67 | eqnetri 2995 |
. . . . . . . . . 10
⊢
(Xp‘1) ≠ 0 |
| 79 | | ne0p 26112 |
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ (Xp‘1) ≠ 0) →
Xp ≠ 0𝑝) |
| 80 | 47, 78, 79 | mp2an 692 |
. . . . . . . . 9
⊢
Xp ≠ 0𝑝 |
| 81 | 51, 80 | pm3.2i 470 |
. . . . . . . 8
⊢
(Xp ∈ (Poly‘ℂ) ∧
Xp ≠ 0𝑝) |
| 82 | | dgrid 26170 |
. . . . . . . . . 10
⊢
(deg‘Xp) = 1 |
| 83 | 82 | eqcomi 2738 |
. . . . . . . . 9
⊢ 1 =
(deg‘Xp) |
| 84 | | eqid 2729 |
. . . . . . . . 9
⊢
(deg‘∗) = (deg‘∗) |
| 85 | 83, 84 | dgrmul 26176 |
. . . . . . . 8
⊢
(((Xp ∈ (Poly‘ℂ) ∧
Xp ≠ 0𝑝) ∧ (∗ ∈
(Poly‘ℂ) ∧ ∗ ≠ 0𝑝)) →
(deg‘(Xp ∘f · ∗)) = (1 +
(deg‘∗))) |
| 86 | 81, 85 | mpan 690 |
. . . . . . 7
⊢
((∗ ∈ (Poly‘ℂ) ∧ ∗ ≠
0𝑝) → (deg‘(Xp
∘f · ∗)) = (1 +
(deg‘∗))) |
| 87 | 70, 86 | mpan2 691 |
. . . . . 6
⊢ (∗
∈ (Poly‘ℂ) → (deg‘(Xp
∘f · ∗)) = (1 +
(deg‘∗))) |
| 88 | 87 | eleq1d 2813 |
. . . . 5
⊢ (∗
∈ (Poly‘ℂ) → ((deg‘(Xp
∘f · ∗)) ∈ ℕ ↔ (1 +
(deg‘∗)) ∈ ℕ)) |
| 89 | 63, 88 | mpbird 257 |
. . . 4
⊢ (∗
∈ (Poly‘ℂ) → (deg‘(Xp
∘f · ∗)) ∈ ℕ) |
| 90 | 49 | a1i 11 |
. . . . . . 7
⊢ (∗
∈ (Poly‘ℂ) → (ℂ × {1}) ∈
(Poly‘ℂ)) |
| 91 | 89 | nngt0d 12235 |
. . . . . . 7
⊢ (∗
∈ (Poly‘ℂ) → 0 < (deg‘(Xp
∘f · ∗))) |
| 92 | | 0dgr 26150 |
. . . . . . . . . 10
⊢ (1 ∈
ℂ → (deg‘(ℂ × {1})) = 0) |
| 93 | 47, 92 | ax-mp 5 |
. . . . . . . . 9
⊢
(deg‘(ℂ × {1})) = 0 |
| 94 | 93 | eqcomi 2738 |
. . . . . . . 8
⊢ 0 =
(deg‘(ℂ × {1})) |
| 95 | | eqid 2729 |
. . . . . . . 8
⊢
(deg‘(Xp ∘f · ∗))
= (deg‘(Xp ∘f ·
∗)) |
| 96 | 94, 95 | dgradd2 26174 |
. . . . . . 7
⊢
(((ℂ × {1}) ∈ (Poly‘ℂ) ∧
(Xp ∘f · ∗) ∈
(Poly‘ℂ) ∧ 0 < (deg‘(Xp
∘f · ∗))) → (deg‘((ℂ ×
{1}) ∘f + (Xp ∘f ·
∗))) = (deg‘(Xp ∘f ·
∗))) |
| 97 | 90, 53, 91, 96 | syl3anc 1373 |
. . . . . 6
⊢ (∗
∈ (Poly‘ℂ) → (deg‘((ℂ × {1})
∘f + (Xp ∘f ·
∗))) = (deg‘(Xp ∘f ·
∗))) |
| 98 | 97 | eleq1d 2813 |
. . . . 5
⊢ (∗
∈ (Poly‘ℂ) → ((deg‘((ℂ × {1})
∘f + (Xp ∘f ·
∗))) ∈ ℕ ↔ (deg‘(Xp
∘f · ∗)) ∈ ℕ)) |
| 99 | 98 | biimprd 248 |
. . . 4
⊢ (∗
∈ (Poly‘ℂ) → ((deg‘(Xp
∘f · ∗)) ∈ ℕ →
(deg‘((ℂ × {1}) ∘f + (Xp
∘f · ∗))) ∈ ℕ)) |
| 100 | 89, 99 | mpd 15 |
. . 3
⊢ (∗
∈ (Poly‘ℂ) → (deg‘((ℂ × {1})
∘f + (Xp ∘f ·
∗))) ∈ ℕ) |
| 101 | | fta 26990 |
. . 3
⊢
((((ℂ × {1}) ∘f + (Xp
∘f · ∗)) ∈ (Poly‘ℂ) ∧
(deg‘((ℂ × {1}) ∘f + (Xp
∘f · ∗))) ∈ ℕ) → ∃𝑥 ∈ ℂ (((ℂ
× {1}) ∘f + (Xp ∘f
· ∗))‘𝑥) = 0) |
| 102 | 55, 100, 101 | syl2anc 584 |
. 2
⊢ (∗
∈ (Poly‘ℂ) → ∃𝑥 ∈ ℂ (((ℂ × {1})
∘f + (Xp ∘f ·
∗))‘𝑥) =
0) |
| 103 | 45, 102 | mto 197 |
1
⊢ ¬
∗ ∈ (Poly‘ℂ) |