![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnovol | Structured version Visualization version GIF version |
Description: The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
ovnovol.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ovnovol.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
Ref | Expression |
---|---|
ovnovol | ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝐵 ↑m {𝐴})) = (vol*‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnovol.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | ovnovol.b | . 2 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
3 | eqid 2726 | . 2 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
4 | eqeq1 2730 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑤 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)) ↔ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) | |
5 | 4 | anbi2d 628 | . . . 4 ⊢ (𝑤 = 𝑧 → ((𝐵 ⊆ ∪ ran ([,) ∘ 𝑓) ∧ 𝑤 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ (𝐵 ⊆ ∪ ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))) |
6 | 5 | rexbidv 3169 | . . 3 ⊢ (𝑤 = 𝑧 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ⊆ ∪ ran ([,) ∘ 𝑓) ∧ 𝑤 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ⊆ ∪ ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))) |
7 | 6 | cbvrabv 3430 | . 2 ⊢ {𝑤 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ⊆ ∪ ran ([,) ∘ 𝑓) ∧ 𝑤 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ⊆ ∪ ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} |
8 | 1, 2, 3, 7 | ovnovollem3 46312 | 1 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝐵 ↑m {𝐴})) = (vol*‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 {crab 3419 ⊆ wss 3946 {csn 4623 ∪ cuni 4905 ∪ ciun 4993 ↦ cmpt 5226 × cxp 5670 ran crn 5673 ∘ ccom 5676 ‘cfv 6543 (class class class)co 7413 ↑m cmap 8844 Xcixp 8915 ℝcr 11145 ℝ*cxr 11285 ℕcn 12255 [,)cico 13371 ∏cprod 15899 vol*covol 25476 volcvol 25477 Σ^csumge0 46016 voln*covoln 46190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-inf2 9674 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8723 df-map 8846 df-pm 8847 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fi 9444 df-sup 9475 df-inf 9476 df-oi 9543 df-dju 9934 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12256 df-2 12318 df-3 12319 df-n0 12516 df-z 12602 df-uz 12866 df-q 12976 df-rp 13020 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ioo 13373 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13673 df-fl 13803 df-seq 14013 df-exp 14073 df-hash 14340 df-cj 15096 df-re 15097 df-im 15098 df-sqrt 15232 df-abs 15233 df-clim 15482 df-rlim 15483 df-sum 15683 df-prod 15900 df-rest 17429 df-topgen 17450 df-psmet 21328 df-xmet 21329 df-met 21330 df-bl 21331 df-mopn 21332 df-top 22881 df-topon 22898 df-bases 22934 df-cmp 23376 df-ovol 25478 df-vol 25479 df-sumge0 46017 df-ovoln 46191 |
This theorem is referenced by: vonvolmbllem 46314 vonvolmbl 46315 vonvol 46316 |
Copyright terms: Public domain | W3C validator |