![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzlmod | Structured version Visualization version GIF version |
Description: The ℤ-module ℤ × ℤ is a (left) module with the ring of integers as base set. (Contributed by AV, 20-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxz.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
Ref | Expression |
---|---|
zlmodzxzlmod | ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring 21374 | . . 3 ⊢ ℤring ∈ Ring | |
2 | prex 5429 | . . 3 ⊢ {0, 1} ∈ V | |
3 | zlmodzxz.z | . . . 4 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
4 | 3 | frlmlmod 21682 | . . 3 ⊢ ((ℤring ∈ Ring ∧ {0, 1} ∈ V) → 𝑍 ∈ LMod) |
5 | 1, 2, 4 | mp2an 690 | . 2 ⊢ 𝑍 ∈ LMod |
6 | 3 | frlmsca 21686 | . . 3 ⊢ ((ℤring ∈ Ring ∧ {0, 1} ∈ V) → ℤring = (Scalar‘𝑍)) |
7 | 1, 2, 6 | mp2an 690 | . 2 ⊢ ℤring = (Scalar‘𝑍) |
8 | 5, 7 | pm3.2i 469 | 1 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 {cpr 4627 ‘cfv 6543 (class class class)co 7413 0cc0 11133 1c1 11134 Scalarcsca 17230 Ringcrg 20172 LModclmod 20742 ℤringczring 21371 freeLMod cfrlm 21679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-addf 11212 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9460 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17417 df-prds 17423 df-pws 17425 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-cring 20175 df-subrng 20482 df-subrg 20507 df-lmod 20744 df-lss 20815 df-sra 21057 df-rgmod 21058 df-cnfld 21279 df-zring 21372 df-dsmm 21665 df-frlm 21680 |
This theorem is referenced by: zlmodzxzsubm 47531 zlmodzxzsub 47532 zlmodzxzldeplem3 47678 zlmodzxzldep 47680 ldepsnlinclem1 47681 ldepsnlinclem2 47682 ldepsnlinc 47684 |
Copyright terms: Public domain | W3C validator |