| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matvscl | Structured version Visualization version GIF version | ||
| Description: Closure of the scalar multiplication in the matrix ring. (lmodvscl 20800 analog.) (Contributed by AV, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| matvscl.k | ⊢ 𝐾 = (Base‘𝑅) |
| matvscl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matvscl.b | ⊢ 𝐵 = (Base‘𝐴) |
| matvscl.s | ⊢ · = ( ·𝑠 ‘𝐴) |
| Ref | Expression |
|---|---|
| matvscl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → (𝐶 · 𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matvscl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | 1 | matlmod 22333 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
| 3 | 2 | adantr 480 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → 𝐴 ∈ LMod) |
| 4 | matvscl.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
| 5 | 1 | matsca2 22324 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
| 6 | 5 | fveq2d 6830 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝐴))) |
| 7 | 4, 6 | eqtrid 2776 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 = (Base‘(Scalar‘𝐴))) |
| 8 | 7 | eleq2d 2814 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐶 ∈ 𝐾 ↔ 𝐶 ∈ (Base‘(Scalar‘𝐴)))) |
| 9 | 8 | biimpd 229 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐶 ∈ 𝐾 → 𝐶 ∈ (Base‘(Scalar‘𝐴)))) |
| 10 | 9 | adantrd 491 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → 𝐶 ∈ (Base‘(Scalar‘𝐴)))) |
| 11 | 10 | imp 406 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → 𝐶 ∈ (Base‘(Scalar‘𝐴))) |
| 12 | simprr 772 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 13 | matvscl.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 14 | eqid 2729 | . . 3 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
| 15 | matvscl.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐴) | |
| 16 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
| 17 | 13, 14, 15, 16 | lmodvscl 20800 | . 2 ⊢ ((𝐴 ∈ LMod ∧ 𝐶 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑋 ∈ 𝐵) → (𝐶 · 𝑋) ∈ 𝐵) |
| 18 | 3, 11, 12, 17 | syl3anc 1373 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → (𝐶 · 𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 Basecbs 17139 Scalarcsca 17183 ·𝑠 cvsca 17184 Ringcrg 20137 LModclmod 20782 Mat cmat 22311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-hom 17204 df-cco 17205 df-0g 17364 df-prds 17370 df-pws 17372 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-minusg 18835 df-sbg 18836 df-subg 19021 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-subrg 20474 df-lmod 20784 df-lss 20854 df-sra 21096 df-rgmod 21097 df-dsmm 21658 df-frlm 21673 df-mat 22312 |
| This theorem is referenced by: dmatscmcl 22407 scmatscmiddistr 22412 scmatmats 22415 scmatscm 22417 scmataddcl 22420 scmatsubcl 22421 scmatmulcl 22422 smatvscl 22428 scmatrhmcl 22432 scmatf1 22435 1pmatscmul 22606 mat2pmatlin 22639 mat2pmatscmxcl 22644 m2pmfzgsumcl 22652 monmatcollpw 22683 pmatcollpw 22685 pmatcollpwfi 22686 chmatcl 22732 chmatval 22733 chmaidscmat 22752 cpmidpmatlem2 22775 chcoeffeqlem 22789 |
| Copyright terms: Public domain | W3C validator |