![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matvscl | Structured version Visualization version GIF version |
Description: Closure of the scalar multiplication in the matrix ring. (lmodvscl 20633 analog.) (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
matvscl.k | β’ πΎ = (Baseβπ ) |
matvscl.a | β’ π΄ = (π Mat π ) |
matvscl.b | β’ π΅ = (Baseβπ΄) |
matvscl.s | β’ Β· = ( Β·π βπ΄) |
Ref | Expression |
---|---|
matvscl | β’ (((π β Fin β§ π β Ring) β§ (πΆ β πΎ β§ π β π΅)) β (πΆ Β· π) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matvscl.a | . . . 4 β’ π΄ = (π Mat π ) | |
2 | 1 | matlmod 22152 | . . 3 β’ ((π β Fin β§ π β Ring) β π΄ β LMod) |
3 | 2 | adantr 480 | . 2 β’ (((π β Fin β§ π β Ring) β§ (πΆ β πΎ β§ π β π΅)) β π΄ β LMod) |
4 | matvscl.k | . . . . . . 7 β’ πΎ = (Baseβπ ) | |
5 | 1 | matsca2 22143 | . . . . . . . 8 β’ ((π β Fin β§ π β Ring) β π = (Scalarβπ΄)) |
6 | 5 | fveq2d 6895 | . . . . . . 7 β’ ((π β Fin β§ π β Ring) β (Baseβπ ) = (Baseβ(Scalarβπ΄))) |
7 | 4, 6 | eqtrid 2783 | . . . . . 6 β’ ((π β Fin β§ π β Ring) β πΎ = (Baseβ(Scalarβπ΄))) |
8 | 7 | eleq2d 2818 | . . . . 5 β’ ((π β Fin β§ π β Ring) β (πΆ β πΎ β πΆ β (Baseβ(Scalarβπ΄)))) |
9 | 8 | biimpd 228 | . . . 4 β’ ((π β Fin β§ π β Ring) β (πΆ β πΎ β πΆ β (Baseβ(Scalarβπ΄)))) |
10 | 9 | adantrd 491 | . . 3 β’ ((π β Fin β§ π β Ring) β ((πΆ β πΎ β§ π β π΅) β πΆ β (Baseβ(Scalarβπ΄)))) |
11 | 10 | imp 406 | . 2 β’ (((π β Fin β§ π β Ring) β§ (πΆ β πΎ β§ π β π΅)) β πΆ β (Baseβ(Scalarβπ΄))) |
12 | simprr 770 | . 2 β’ (((π β Fin β§ π β Ring) β§ (πΆ β πΎ β§ π β π΅)) β π β π΅) | |
13 | matvscl.b | . . 3 β’ π΅ = (Baseβπ΄) | |
14 | eqid 2731 | . . 3 β’ (Scalarβπ΄) = (Scalarβπ΄) | |
15 | matvscl.s | . . 3 β’ Β· = ( Β·π βπ΄) | |
16 | eqid 2731 | . . 3 β’ (Baseβ(Scalarβπ΄)) = (Baseβ(Scalarβπ΄)) | |
17 | 13, 14, 15, 16 | lmodvscl 20633 | . 2 β’ ((π΄ β LMod β§ πΆ β (Baseβ(Scalarβπ΄)) β§ π β π΅) β (πΆ Β· π) β π΅) |
18 | 3, 11, 12, 17 | syl3anc 1370 | 1 β’ (((π β Fin β§ π β Ring) β§ (πΆ β πΎ β§ π β π΅)) β (πΆ Β· π) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βcfv 6543 (class class class)co 7412 Fincfn 8942 Basecbs 17149 Scalarcsca 17205 Β·π cvsca 17206 Ringcrg 20128 LModclmod 20615 Mat cmat 22128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-prds 17398 df-pws 17400 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-subrg 20460 df-lmod 20617 df-lss 20688 df-sra 20931 df-rgmod 20932 df-dsmm 21507 df-frlm 21522 df-mat 22129 |
This theorem is referenced by: dmatscmcl 22226 scmatscmiddistr 22231 scmatmats 22234 scmatscm 22236 scmataddcl 22239 scmatsubcl 22240 scmatmulcl 22241 smatvscl 22247 scmatrhmcl 22251 scmatf1 22254 1pmatscmul 22425 mat2pmatlin 22458 mat2pmatscmxcl 22463 m2pmfzgsumcl 22471 monmatcollpw 22502 pmatcollpw 22504 pmatcollpwfi 22505 chmatcl 22551 chmatval 22552 chmaidscmat 22571 cpmidpmatlem2 22594 chcoeffeqlem 22608 |
Copyright terms: Public domain | W3C validator |