Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-ovoliunnfl Structured version   Visualization version   GIF version

Theorem ex-ovoliunnfl 35443
Description: Demonstration of ovoliunnfl 35442. (Contributed by Brendan Leahy, 21-Nov-2017.)
Assertion
Ref Expression
ex-ovoliunnfl ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Distinct variable group:   𝑥,𝐴

Proof of Theorem ex-ovoliunnfl
Dummy variables 𝑓 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚))))
2 eqid 2738 . . 3 (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚))) = (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))
3 fveq2 6674 . . . . . . . 8 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
43sseq1d 3908 . . . . . . 7 (𝑛 = 𝑚 → ((𝑓𝑛) ⊆ ℝ ↔ (𝑓𝑚) ⊆ ℝ))
5 2fveq3 6679 . . . . . . . 8 (𝑛 = 𝑚 → (vol*‘(𝑓𝑛)) = (vol*‘(𝑓𝑚)))
65eleq1d 2817 . . . . . . 7 (𝑛 = 𝑚 → ((vol*‘(𝑓𝑛)) ∈ ℝ ↔ (vol*‘(𝑓𝑚)) ∈ ℝ))
74, 6anbi12d 634 . . . . . 6 (𝑛 = 𝑚 → (((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ) ↔ ((𝑓𝑚) ⊆ ℝ ∧ (vol*‘(𝑓𝑚)) ∈ ℝ)))
87rspccva 3525 . . . . 5 ((∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑓𝑚) ⊆ ℝ ∧ (vol*‘(𝑓𝑚)) ∈ ℝ))
98simpld 498 . . . 4 ((∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ⊆ ℝ)
109adantll 714 . . 3 (((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ⊆ ℝ)
118simprd 499 . . . 4 ((∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ) ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑓𝑚)) ∈ ℝ)
1211adantll 714 . . 3 (((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑓𝑚)) ∈ ℝ)
131, 2, 10, 12ovoliun 24257 . 2 ((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
1413ovoliunnfl 35442 1 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114  wne 2934  wral 3053  wss 3843   cuni 4796   class class class wbr 5030  cmpt 5110   Fn wfn 6334  cfv 6339  cdom 8553  cr 10614  1c1 10616   + caddc 10618  cn 11716  seqcseq 13460  vol*covol 24214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cc 9935  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-rlim 14936  df-sum 15136  df-rest 16799  df-topgen 16820  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-top 21645  df-topon 21662  df-bases 21697  df-cmp 22138  df-ovol 24216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator