Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldgenfldext Structured version   Visualization version   GIF version

Theorem fldgenfldext 33663
Description: A subfield 𝐹 extended with a set 𝐴 forms a field extension. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
fldgenfldext.b 𝐵 = (Base‘𝐸)
fldgenfldext.k 𝐾 = (𝐸s 𝐹)
fldgenfldext.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹𝐴)))
fldgenfldext.e (𝜑𝐸 ∈ Field)
fldgenfldext.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
fldgenfldext.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
fldgenfldext (𝜑𝐿/FldExt𝐾)

Proof of Theorem fldgenfldext
StepHypRef Expression
1 fldgenfldext.l . . 3 𝐿 = (𝐸s (𝐸 fldGen (𝐹𝐴)))
2 fldgenfldext.b . . . 4 𝐵 = (Base‘𝐸)
3 fldgenfldext.e . . . 4 (𝜑𝐸 ∈ Field)
4 fldgenfldext.f . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
52sdrgss 20702 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
64, 5syl 17 . . . . 5 (𝜑𝐹𝐵)
7 fldgenfldext.1 . . . . 5 (𝜑𝐴𝐵)
86, 7unssd 4155 . . . 4 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
92, 3, 8fldgenfld 33270 . . 3 (𝜑 → (𝐸s (𝐸 fldGen (𝐹𝐴))) ∈ Field)
101, 9eqeltrid 2832 . 2 (𝜑𝐿 ∈ Field)
11 fldgenfldext.k . . 3 𝐾 = (𝐸s 𝐹)
12 fldsdrgfld 20707 . . . 4 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
133, 4, 12syl2anc 584 . . 3 (𝜑 → (𝐸s 𝐹) ∈ Field)
1411, 13eqeltrid 2832 . 2 (𝜑𝐾 ∈ Field)
151oveq1i 7397 . . . . . 6 (𝐿s 𝐹) = ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹)
16 ovexd 7422 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹𝐴)) ∈ V)
17 ressress 17217 . . . . . . 7 (((𝐸 fldGen (𝐹𝐴)) ∈ V ∧ 𝐹 ∈ (SubDRing‘𝐸)) → ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
1816, 4, 17syl2anc 584 . . . . . 6 (𝜑 → ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
1915, 18eqtrid 2776 . . . . 5 (𝜑 → (𝐿s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
203flddrngd 20650 . . . . . . . . 9 (𝜑𝐸 ∈ DivRing)
212, 20, 8fldgenssid 33263 . . . . . . . 8 (𝜑 → (𝐹𝐴) ⊆ (𝐸 fldGen (𝐹𝐴)))
2221unssad 4156 . . . . . . 7 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹𝐴)))
23 sseqin2 4186 . . . . . . 7 (𝐹 ⊆ (𝐸 fldGen (𝐹𝐴)) ↔ ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹) = 𝐹)
2422, 23sylib 218 . . . . . 6 (𝜑 → ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹) = 𝐹)
2524oveq2d 7403 . . . . 5 (𝜑 → (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)) = (𝐸s 𝐹))
2619, 25eqtrd 2764 . . . 4 (𝜑 → (𝐿s 𝐹) = (𝐸s 𝐹))
2711, 2ressbas2 17208 . . . . . 6 (𝐹𝐵𝐹 = (Base‘𝐾))
286, 27syl 17 . . . . 5 (𝜑𝐹 = (Base‘𝐾))
2928oveq2d 7403 . . . 4 (𝜑 → (𝐿s 𝐹) = (𝐿s (Base‘𝐾)))
3026, 29eqtr3d 2766 . . 3 (𝜑 → (𝐸s 𝐹) = (𝐿s (Base‘𝐾)))
3111, 30eqtrid 2776 . 2 (𝜑𝐾 = (𝐿s (Base‘𝐾)))
3210fldcrngd 20651 . . . . 5 (𝜑𝐿 ∈ CRing)
3332crngringd 20155 . . . 4 (𝜑𝐿 ∈ Ring)
3414fldcrngd 20651 . . . . . . 7 (𝜑𝐾 ∈ CRing)
3534crngringd 20155 . . . . . 6 (𝜑𝐾 ∈ Ring)
3611, 35eqeltrrid 2833 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ Ring)
3726, 36eqeltrd 2828 . . . 4 (𝜑 → (𝐿s 𝐹) ∈ Ring)
382, 20, 8fldgenssv 33265 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵)
391, 2ressbas2 17208 . . . . . . 7 ((𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵 → (𝐸 fldGen (𝐹𝐴)) = (Base‘𝐿))
4038, 39syl 17 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹𝐴)) = (Base‘𝐿))
4122, 40sseqtrd 3983 . . . . 5 (𝜑𝐹 ⊆ (Base‘𝐿))
4220drngringd 20646 . . . . . . 7 (𝜑𝐸 ∈ Ring)
43 sdrgsubrg 20700 . . . . . . . . 9 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
44 eqid 2729 . . . . . . . . . 10 (1r𝐸) = (1r𝐸)
4544subrg1cl 20489 . . . . . . . . 9 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
464, 43, 453syl 18 . . . . . . . 8 (𝜑 → (1r𝐸) ∈ 𝐹)
4722, 46sseldd 3947 . . . . . . 7 (𝜑 → (1r𝐸) ∈ (𝐸 fldGen (𝐹𝐴)))
481, 2, 44ress1r 33185 . . . . . . 7 ((𝐸 ∈ Ring ∧ (1r𝐸) ∈ (𝐸 fldGen (𝐹𝐴)) ∧ (𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵) → (1r𝐸) = (1r𝐿))
4942, 47, 38, 48syl3anc 1373 . . . . . 6 (𝜑 → (1r𝐸) = (1r𝐿))
5049, 46eqeltrrd 2829 . . . . 5 (𝜑 → (1r𝐿) ∈ 𝐹)
5141, 50jca 511 . . . 4 (𝜑 → (𝐹 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝐹))
52 eqid 2729 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
53 eqid 2729 . . . . 5 (1r𝐿) = (1r𝐿)
5452, 53issubrg 20480 . . . 4 (𝐹 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝐹) ∈ Ring) ∧ (𝐹 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝐹)))
5533, 37, 51, 54syl21anbrc 1345 . . 3 (𝜑𝐹 ∈ (SubRing‘𝐿))
5628, 55eqeltrrd 2829 . 2 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐿))
57 brfldext 33641 . . 3 ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) → (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))))
5857biimpar 477 . 2 (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))) → 𝐿/FldExt𝐾)
5910, 14, 31, 56, 58syl22anc 838 1 (𝜑𝐿/FldExt𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  cin 3913  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  1rcur 20090  Ringcrg 20142  SubRingcsubrg 20478  Fieldcfield 20639  SubDRingcsdrg 20695   fldGen cfldgen 33260  /FldExtcfldext 33634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-sdrg 20696  df-fldgen 33261  df-fldext 33637
This theorem is referenced by:  fldextrspundgle  33673  fldextrspundglemul  33674  fldextrspundgdvdslem  33675  fldextrspundgdvds  33676  fldext2rspun  33677  rtelextdg2  33717  constrextdg2lem  33738  constrext2chnlem  33740
  Copyright terms: Public domain W3C validator