Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldgenfldext Structured version   Visualization version   GIF version

Theorem fldgenfldext 33557
Description: A subfield 𝐹 extended with a set 𝐴 forms a field extension. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
fldgenfldext.b 𝐵 = (Base‘𝐸)
fldgenfldext.k 𝐾 = (𝐸s 𝐹)
fldgenfldext.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹𝐴)))
fldgenfldext.e (𝜑𝐸 ∈ Field)
fldgenfldext.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
fldgenfldext.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
fldgenfldext (𝜑𝐿/FldExt𝐾)

Proof of Theorem fldgenfldext
StepHypRef Expression
1 fldgenfldext.l . . 3 𝐿 = (𝐸s (𝐸 fldGen (𝐹𝐴)))
2 fldgenfldext.b . . . 4 𝐵 = (Base‘𝐸)
3 fldgenfldext.e . . . 4 (𝜑𝐸 ∈ Field)
4 fldgenfldext.f . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
52sdrgss 20765 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
64, 5syl 17 . . . . 5 (𝜑𝐹𝐵)
7 fldgenfldext.1 . . . . 5 (𝜑𝐴𝐵)
86, 7unssd 4184 . . . 4 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
92, 3, 8fldgenfld 33172 . . 3 (𝜑 → (𝐸s (𝐸 fldGen (𝐹𝐴))) ∈ Field)
101, 9eqeltrid 2830 . 2 (𝜑𝐿 ∈ Field)
11 fldgenfldext.k . . 3 𝐾 = (𝐸s 𝐹)
12 fldsdrgfld 20770 . . . 4 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
133, 4, 12syl2anc 582 . . 3 (𝜑 → (𝐸s 𝐹) ∈ Field)
1411, 13eqeltrid 2830 . 2 (𝜑𝐾 ∈ Field)
151oveq1i 7423 . . . . . 6 (𝐿s 𝐹) = ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹)
16 ovexd 7448 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹𝐴)) ∈ V)
17 ressress 17254 . . . . . . 7 (((𝐸 fldGen (𝐹𝐴)) ∈ V ∧ 𝐹 ∈ (SubDRing‘𝐸)) → ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
1816, 4, 17syl2anc 582 . . . . . 6 (𝜑 → ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
1915, 18eqtrid 2778 . . . . 5 (𝜑 → (𝐿s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
203flddrngd 20712 . . . . . . . . 9 (𝜑𝐸 ∈ DivRing)
212, 20, 8fldgenssid 33165 . . . . . . . 8 (𝜑 → (𝐹𝐴) ⊆ (𝐸 fldGen (𝐹𝐴)))
2221unssad 4185 . . . . . . 7 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹𝐴)))
23 sseqin2 4213 . . . . . . 7 (𝐹 ⊆ (𝐸 fldGen (𝐹𝐴)) ↔ ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹) = 𝐹)
2422, 23sylib 217 . . . . . 6 (𝜑 → ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹) = 𝐹)
2524oveq2d 7429 . . . . 5 (𝜑 → (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)) = (𝐸s 𝐹))
2619, 25eqtrd 2766 . . . 4 (𝜑 → (𝐿s 𝐹) = (𝐸s 𝐹))
2711, 2ressbas2 17243 . . . . . 6 (𝐹𝐵𝐹 = (Base‘𝐾))
286, 27syl 17 . . . . 5 (𝜑𝐹 = (Base‘𝐾))
2928oveq2d 7429 . . . 4 (𝜑 → (𝐿s 𝐹) = (𝐿s (Base‘𝐾)))
3026, 29eqtr3d 2768 . . 3 (𝜑 → (𝐸s 𝐹) = (𝐿s (Base‘𝐾)))
3111, 30eqtrid 2778 . 2 (𝜑𝐾 = (𝐿s (Base‘𝐾)))
3210fldcrngd 20713 . . . . 5 (𝜑𝐿 ∈ CRing)
3332crngringd 20222 . . . 4 (𝜑𝐿 ∈ Ring)
3414fldcrngd 20713 . . . . . . 7 (𝜑𝐾 ∈ CRing)
3534crngringd 20222 . . . . . 6 (𝜑𝐾 ∈ Ring)
3611, 35eqeltrrid 2831 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ Ring)
3726, 36eqeltrd 2826 . . . 4 (𝜑 → (𝐿s 𝐹) ∈ Ring)
382, 20, 8fldgenssv 33167 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵)
391, 2ressbas2 17243 . . . . . . 7 ((𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵 → (𝐸 fldGen (𝐹𝐴)) = (Base‘𝐿))
4038, 39syl 17 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹𝐴)) = (Base‘𝐿))
4122, 40sseqtrd 4019 . . . . 5 (𝜑𝐹 ⊆ (Base‘𝐿))
4220drngringd 20708 . . . . . . 7 (𝜑𝐸 ∈ Ring)
43 sdrgsubrg 20763 . . . . . . . . 9 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
44 eqid 2726 . . . . . . . . . 10 (1r𝐸) = (1r𝐸)
4544subrg1cl 20557 . . . . . . . . 9 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
464, 43, 453syl 18 . . . . . . . 8 (𝜑 → (1r𝐸) ∈ 𝐹)
4722, 46sseldd 3979 . . . . . . 7 (𝜑 → (1r𝐸) ∈ (𝐸 fldGen (𝐹𝐴)))
481, 2, 44ress1r 33101 . . . . . . 7 ((𝐸 ∈ Ring ∧ (1r𝐸) ∈ (𝐸 fldGen (𝐹𝐴)) ∧ (𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵) → (1r𝐸) = (1r𝐿))
4942, 47, 38, 48syl3anc 1368 . . . . . 6 (𝜑 → (1r𝐸) = (1r𝐿))
5049, 46eqeltrrd 2827 . . . . 5 (𝜑 → (1r𝐿) ∈ 𝐹)
5141, 50jca 510 . . . 4 (𝜑 → (𝐹 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝐹))
52 eqid 2726 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
53 eqid 2726 . . . . 5 (1r𝐿) = (1r𝐿)
5452, 53issubrg 20548 . . . 4 (𝐹 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝐹) ∈ Ring) ∧ (𝐹 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝐹)))
5533, 37, 51, 54syl21anbrc 1341 . . 3 (𝜑𝐹 ∈ (SubRing‘𝐿))
5628, 55eqeltrrd 2827 . 2 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐿))
57 brfldext 33539 . . 3 ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) → (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))))
5857biimpar 476 . 2 (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))) → 𝐿/FldExt𝐾)
5910, 14, 31, 56, 58syl22anc 837 1 (𝜑𝐿/FldExt𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cun 3944  cin 3945  wss 3946   class class class wbr 5143  cfv 6543  (class class class)co 7413  Basecbs 17205  s cress 17234  1rcur 20157  Ringcrg 20209  SubRingcsubrg 20544  Fieldcfield 20701  SubDRingcsdrg 20758   fldGen cfldgen 33162  /FldExtcfldext 33530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-2 12318  df-3 12319  df-sets 17158  df-slot 17176  df-ndx 17188  df-base 17206  df-ress 17235  df-plusg 17271  df-mulr 17272  df-0g 17448  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-grp 18923  df-minusg 18924  df-subg 19110  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20129  df-ur 20158  df-ring 20211  df-cring 20212  df-oppr 20309  df-dvdsr 20332  df-unit 20333  df-invr 20363  df-dvr 20376  df-subrng 20521  df-subrg 20546  df-drng 20702  df-field 20703  df-sdrg 20759  df-fldgen 33163  df-fldext 33534
This theorem is referenced by:  rtelextdg2  33597
  Copyright terms: Public domain W3C validator