Proof of Theorem fldgenfldext
Step | Hyp | Ref
| Expression |
1 | | fldgenfldext.l |
. . 3
⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ 𝐴))) |
2 | | fldgenfldext.b |
. . . 4
⊢ 𝐵 = (Base‘𝐸) |
3 | | fldgenfldext.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ Field) |
4 | | fldgenfldext.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
5 | 2 | sdrgss 20765 |
. . . . . 6
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ 𝐵) |
6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
7 | | fldgenfldext.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
8 | 6, 7 | unssd 4184 |
. . . 4
⊢ (𝜑 → (𝐹 ∪ 𝐴) ⊆ 𝐵) |
9 | 2, 3, 8 | fldgenfld 33172 |
. . 3
⊢ (𝜑 → (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ 𝐴))) ∈ Field) |
10 | 1, 9 | eqeltrid 2830 |
. 2
⊢ (𝜑 → 𝐿 ∈ Field) |
11 | | fldgenfldext.k |
. . 3
⊢ 𝐾 = (𝐸 ↾s 𝐹) |
12 | | fldsdrgfld 20770 |
. . . 4
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) |
13 | 3, 4, 12 | syl2anc 582 |
. . 3
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
14 | 11, 13 | eqeltrid 2830 |
. 2
⊢ (𝜑 → 𝐾 ∈ Field) |
15 | 1 | oveq1i 7423 |
. . . . . 6
⊢ (𝐿 ↾s 𝐹) = ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ 𝐴))) ↾s 𝐹) |
16 | | ovexd 7448 |
. . . . . . 7
⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ 𝐴)) ∈ V) |
17 | | ressress 17254 |
. . . . . . 7
⊢ (((𝐸 fldGen (𝐹 ∪ 𝐴)) ∈ V ∧ 𝐹 ∈ (SubDRing‘𝐸)) → ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ 𝐴))) ↾s 𝐹) = (𝐸 ↾s ((𝐸 fldGen (𝐹 ∪ 𝐴)) ∩ 𝐹))) |
18 | 16, 4, 17 | syl2anc 582 |
. . . . . 6
⊢ (𝜑 → ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ 𝐴))) ↾s 𝐹) = (𝐸 ↾s ((𝐸 fldGen (𝐹 ∪ 𝐴)) ∩ 𝐹))) |
19 | 15, 18 | eqtrid 2778 |
. . . . 5
⊢ (𝜑 → (𝐿 ↾s 𝐹) = (𝐸 ↾s ((𝐸 fldGen (𝐹 ∪ 𝐴)) ∩ 𝐹))) |
20 | 3 | flddrngd 20712 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ DivRing) |
21 | 2, 20, 8 | fldgenssid 33165 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∪ 𝐴) ⊆ (𝐸 fldGen (𝐹 ∪ 𝐴))) |
22 | 21 | unssad 4185 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ 𝐴))) |
23 | | sseqin2 4213 |
. . . . . . 7
⊢ (𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ 𝐴)) ↔ ((𝐸 fldGen (𝐹 ∪ 𝐴)) ∩ 𝐹) = 𝐹) |
24 | 22, 23 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ((𝐸 fldGen (𝐹 ∪ 𝐴)) ∩ 𝐹) = 𝐹) |
25 | 24 | oveq2d 7429 |
. . . . 5
⊢ (𝜑 → (𝐸 ↾s ((𝐸 fldGen (𝐹 ∪ 𝐴)) ∩ 𝐹)) = (𝐸 ↾s 𝐹)) |
26 | 19, 25 | eqtrd 2766 |
. . . 4
⊢ (𝜑 → (𝐿 ↾s 𝐹) = (𝐸 ↾s 𝐹)) |
27 | 11, 2 | ressbas2 17243 |
. . . . . 6
⊢ (𝐹 ⊆ 𝐵 → 𝐹 = (Base‘𝐾)) |
28 | 6, 27 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹 = (Base‘𝐾)) |
29 | 28 | oveq2d 7429 |
. . . 4
⊢ (𝜑 → (𝐿 ↾s 𝐹) = (𝐿 ↾s (Base‘𝐾))) |
30 | 26, 29 | eqtr3d 2768 |
. . 3
⊢ (𝜑 → (𝐸 ↾s 𝐹) = (𝐿 ↾s (Base‘𝐾))) |
31 | 11, 30 | eqtrid 2778 |
. 2
⊢ (𝜑 → 𝐾 = (𝐿 ↾s (Base‘𝐾))) |
32 | 10 | fldcrngd 20713 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ CRing) |
33 | 32 | crngringd 20222 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ Ring) |
34 | 14 | fldcrngd 20713 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ CRing) |
35 | 34 | crngringd 20222 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Ring) |
36 | 11, 35 | eqeltrrid 2831 |
. . . . 5
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Ring) |
37 | 26, 36 | eqeltrd 2826 |
. . . 4
⊢ (𝜑 → (𝐿 ↾s 𝐹) ∈ Ring) |
38 | 2, 20, 8 | fldgenssv 33167 |
. . . . . . 7
⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ 𝐴)) ⊆ 𝐵) |
39 | 1, 2 | ressbas2 17243 |
. . . . . . 7
⊢ ((𝐸 fldGen (𝐹 ∪ 𝐴)) ⊆ 𝐵 → (𝐸 fldGen (𝐹 ∪ 𝐴)) = (Base‘𝐿)) |
40 | 38, 39 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐸 fldGen (𝐹 ∪ 𝐴)) = (Base‘𝐿)) |
41 | 22, 40 | sseqtrd 4019 |
. . . . 5
⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐿)) |
42 | 20 | drngringd 20708 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ Ring) |
43 | | sdrgsubrg 20763 |
. . . . . . . . 9
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) |
44 | | eqid 2726 |
. . . . . . . . . 10
⊢
(1r‘𝐸) = (1r‘𝐸) |
45 | 44 | subrg1cl 20557 |
. . . . . . . . 9
⊢ (𝐹 ∈ (SubRing‘𝐸) →
(1r‘𝐸)
∈ 𝐹) |
46 | 4, 43, 45 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝐸) ∈ 𝐹) |
47 | 22, 46 | sseldd 3979 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝐸) ∈ (𝐸 fldGen (𝐹 ∪ 𝐴))) |
48 | 1, 2, 44 | ress1r 33101 |
. . . . . . 7
⊢ ((𝐸 ∈ Ring ∧
(1r‘𝐸)
∈ (𝐸 fldGen (𝐹 ∪ 𝐴)) ∧ (𝐸 fldGen (𝐹 ∪ 𝐴)) ⊆ 𝐵) → (1r‘𝐸) = (1r‘𝐿)) |
49 | 42, 47, 38, 48 | syl3anc 1368 |
. . . . . 6
⊢ (𝜑 → (1r‘𝐸) = (1r‘𝐿)) |
50 | 49, 46 | eqeltrrd 2827 |
. . . . 5
⊢ (𝜑 → (1r‘𝐿) ∈ 𝐹) |
51 | 41, 50 | jca 510 |
. . . 4
⊢ (𝜑 → (𝐹 ⊆ (Base‘𝐿) ∧ (1r‘𝐿) ∈ 𝐹)) |
52 | | eqid 2726 |
. . . . 5
⊢
(Base‘𝐿) =
(Base‘𝐿) |
53 | | eqid 2726 |
. . . . 5
⊢
(1r‘𝐿) = (1r‘𝐿) |
54 | 52, 53 | issubrg 20548 |
. . . 4
⊢ (𝐹 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿 ↾s 𝐹) ∈ Ring) ∧ (𝐹 ⊆ (Base‘𝐿) ∧ (1r‘𝐿) ∈ 𝐹))) |
55 | 33, 37, 51, 54 | syl21anbrc 1341 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐿)) |
56 | 28, 55 | eqeltrrd 2827 |
. 2
⊢ (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐿)) |
57 | | brfldext 33539 |
. . 3
⊢ ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) → (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿)))) |
58 | 57 | biimpar 476 |
. 2
⊢ (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))) → 𝐿/FldExt𝐾) |
59 | 10, 14, 31, 56, 58 | syl22anc 837 |
1
⊢ (𝜑 → 𝐿/FldExt𝐾) |