Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldgenfldext Structured version   Visualization version   GIF version

Theorem fldgenfldext 33678
Description: A subfield 𝐹 extended with a set 𝐴 forms a field extension. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
fldgenfldext.b 𝐵 = (Base‘𝐸)
fldgenfldext.k 𝐾 = (𝐸s 𝐹)
fldgenfldext.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹𝐴)))
fldgenfldext.e (𝜑𝐸 ∈ Field)
fldgenfldext.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
fldgenfldext.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
fldgenfldext (𝜑𝐿/FldExt𝐾)

Proof of Theorem fldgenfldext
StepHypRef Expression
1 fldgenfldext.l . . 3 𝐿 = (𝐸s (𝐸 fldGen (𝐹𝐴)))
2 fldgenfldext.b . . . 4 𝐵 = (Base‘𝐸)
3 fldgenfldext.e . . . 4 (𝜑𝐸 ∈ Field)
4 fldgenfldext.f . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
52sdrgss 20816 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
64, 5syl 17 . . . . 5 (𝜑𝐹𝐵)
7 fldgenfldext.1 . . . . 5 (𝜑𝐴𝐵)
86, 7unssd 4215 . . . 4 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
92, 3, 8fldgenfld 33287 . . 3 (𝜑 → (𝐸s (𝐸 fldGen (𝐹𝐴))) ∈ Field)
101, 9eqeltrid 2848 . 2 (𝜑𝐿 ∈ Field)
11 fldgenfldext.k . . 3 𝐾 = (𝐸s 𝐹)
12 fldsdrgfld 20821 . . . 4 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
133, 4, 12syl2anc 583 . . 3 (𝜑 → (𝐸s 𝐹) ∈ Field)
1411, 13eqeltrid 2848 . 2 (𝜑𝐾 ∈ Field)
151oveq1i 7458 . . . . . 6 (𝐿s 𝐹) = ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹)
16 ovexd 7483 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹𝐴)) ∈ V)
17 ressress 17307 . . . . . . 7 (((𝐸 fldGen (𝐹𝐴)) ∈ V ∧ 𝐹 ∈ (SubDRing‘𝐸)) → ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
1816, 4, 17syl2anc 583 . . . . . 6 (𝜑 → ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
1915, 18eqtrid 2792 . . . . 5 (𝜑 → (𝐿s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
203flddrngd 20763 . . . . . . . . 9 (𝜑𝐸 ∈ DivRing)
212, 20, 8fldgenssid 33280 . . . . . . . 8 (𝜑 → (𝐹𝐴) ⊆ (𝐸 fldGen (𝐹𝐴)))
2221unssad 4216 . . . . . . 7 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹𝐴)))
23 sseqin2 4244 . . . . . . 7 (𝐹 ⊆ (𝐸 fldGen (𝐹𝐴)) ↔ ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹) = 𝐹)
2422, 23sylib 218 . . . . . 6 (𝜑 → ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹) = 𝐹)
2524oveq2d 7464 . . . . 5 (𝜑 → (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)) = (𝐸s 𝐹))
2619, 25eqtrd 2780 . . . 4 (𝜑 → (𝐿s 𝐹) = (𝐸s 𝐹))
2711, 2ressbas2 17296 . . . . . 6 (𝐹𝐵𝐹 = (Base‘𝐾))
286, 27syl 17 . . . . 5 (𝜑𝐹 = (Base‘𝐾))
2928oveq2d 7464 . . . 4 (𝜑 → (𝐿s 𝐹) = (𝐿s (Base‘𝐾)))
3026, 29eqtr3d 2782 . . 3 (𝜑 → (𝐸s 𝐹) = (𝐿s (Base‘𝐾)))
3111, 30eqtrid 2792 . 2 (𝜑𝐾 = (𝐿s (Base‘𝐾)))
3210fldcrngd 20764 . . . . 5 (𝜑𝐿 ∈ CRing)
3332crngringd 20273 . . . 4 (𝜑𝐿 ∈ Ring)
3414fldcrngd 20764 . . . . . . 7 (𝜑𝐾 ∈ CRing)
3534crngringd 20273 . . . . . 6 (𝜑𝐾 ∈ Ring)
3611, 35eqeltrrid 2849 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ Ring)
3726, 36eqeltrd 2844 . . . 4 (𝜑 → (𝐿s 𝐹) ∈ Ring)
382, 20, 8fldgenssv 33282 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵)
391, 2ressbas2 17296 . . . . . . 7 ((𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵 → (𝐸 fldGen (𝐹𝐴)) = (Base‘𝐿))
4038, 39syl 17 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹𝐴)) = (Base‘𝐿))
4122, 40sseqtrd 4049 . . . . 5 (𝜑𝐹 ⊆ (Base‘𝐿))
4220drngringd 20759 . . . . . . 7 (𝜑𝐸 ∈ Ring)
43 sdrgsubrg 20814 . . . . . . . . 9 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
44 eqid 2740 . . . . . . . . . 10 (1r𝐸) = (1r𝐸)
4544subrg1cl 20608 . . . . . . . . 9 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
464, 43, 453syl 18 . . . . . . . 8 (𝜑 → (1r𝐸) ∈ 𝐹)
4722, 46sseldd 4009 . . . . . . 7 (𝜑 → (1r𝐸) ∈ (𝐸 fldGen (𝐹𝐴)))
481, 2, 44ress1r 33214 . . . . . . 7 ((𝐸 ∈ Ring ∧ (1r𝐸) ∈ (𝐸 fldGen (𝐹𝐴)) ∧ (𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵) → (1r𝐸) = (1r𝐿))
4942, 47, 38, 48syl3anc 1371 . . . . . 6 (𝜑 → (1r𝐸) = (1r𝐿))
5049, 46eqeltrrd 2845 . . . . 5 (𝜑 → (1r𝐿) ∈ 𝐹)
5141, 50jca 511 . . . 4 (𝜑 → (𝐹 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝐹))
52 eqid 2740 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
53 eqid 2740 . . . . 5 (1r𝐿) = (1r𝐿)
5452, 53issubrg 20599 . . . 4 (𝐹 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝐹) ∈ Ring) ∧ (𝐹 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝐹)))
5533, 37, 51, 54syl21anbrc 1344 . . 3 (𝜑𝐹 ∈ (SubRing‘𝐿))
5628, 55eqeltrrd 2845 . 2 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐿))
57 brfldext 33660 . . 3 ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) → (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))))
5857biimpar 477 . 2 (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))) → 𝐿/FldExt𝐾)
5910, 14, 31, 56, 58syl22anc 838 1 (𝜑𝐿/FldExt𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  cin 3975  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  1rcur 20208  Ringcrg 20260  SubRingcsubrg 20595  Fieldcfield 20752  SubDRingcsdrg 20809   fldGen cfldgen 33277  /FldExtcfldext 33651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-sdrg 20810  df-fldgen 33278  df-fldext 33655
This theorem is referenced by:  rtelextdg2  33718
  Copyright terms: Public domain W3C validator