Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldgenfldext Structured version   Visualization version   GIF version

Theorem fldgenfldext 33688
Description: A subfield 𝐹 extended with a set 𝐴 forms a field extension. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
fldgenfldext.b 𝐵 = (Base‘𝐸)
fldgenfldext.k 𝐾 = (𝐸s 𝐹)
fldgenfldext.l 𝐿 = (𝐸s (𝐸 fldGen (𝐹𝐴)))
fldgenfldext.e (𝜑𝐸 ∈ Field)
fldgenfldext.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
fldgenfldext.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
fldgenfldext (𝜑𝐿/FldExt𝐾)

Proof of Theorem fldgenfldext
StepHypRef Expression
1 fldgenfldext.l . . 3 𝐿 = (𝐸s (𝐸 fldGen (𝐹𝐴)))
2 fldgenfldext.b . . . 4 𝐵 = (Base‘𝐸)
3 fldgenfldext.e . . . 4 (𝜑𝐸 ∈ Field)
4 fldgenfldext.f . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐸))
52sdrgss 20714 . . . . . 6 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
64, 5syl 17 . . . . 5 (𝜑𝐹𝐵)
7 fldgenfldext.1 . . . . 5 (𝜑𝐴𝐵)
86, 7unssd 4141 . . . 4 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
92, 3, 8fldgenfld 33293 . . 3 (𝜑 → (𝐸s (𝐸 fldGen (𝐹𝐴))) ∈ Field)
101, 9eqeltrid 2835 . 2 (𝜑𝐿 ∈ Field)
11 fldgenfldext.k . . 3 𝐾 = (𝐸s 𝐹)
12 fldsdrgfld 20719 . . . 4 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
133, 4, 12syl2anc 584 . . 3 (𝜑 → (𝐸s 𝐹) ∈ Field)
1411, 13eqeltrid 2835 . 2 (𝜑𝐾 ∈ Field)
151oveq1i 7362 . . . . . 6 (𝐿s 𝐹) = ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹)
16 ovexd 7387 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹𝐴)) ∈ V)
17 ressress 17164 . . . . . . 7 (((𝐸 fldGen (𝐹𝐴)) ∈ V ∧ 𝐹 ∈ (SubDRing‘𝐸)) → ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
1816, 4, 17syl2anc 584 . . . . . 6 (𝜑 → ((𝐸s (𝐸 fldGen (𝐹𝐴))) ↾s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
1915, 18eqtrid 2778 . . . . 5 (𝜑 → (𝐿s 𝐹) = (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)))
203flddrngd 20662 . . . . . . . . 9 (𝜑𝐸 ∈ DivRing)
212, 20, 8fldgenssid 33286 . . . . . . . 8 (𝜑 → (𝐹𝐴) ⊆ (𝐸 fldGen (𝐹𝐴)))
2221unssad 4142 . . . . . . 7 (𝜑𝐹 ⊆ (𝐸 fldGen (𝐹𝐴)))
23 sseqin2 4172 . . . . . . 7 (𝐹 ⊆ (𝐸 fldGen (𝐹𝐴)) ↔ ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹) = 𝐹)
2422, 23sylib 218 . . . . . 6 (𝜑 → ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹) = 𝐹)
2524oveq2d 7368 . . . . 5 (𝜑 → (𝐸s ((𝐸 fldGen (𝐹𝐴)) ∩ 𝐹)) = (𝐸s 𝐹))
2619, 25eqtrd 2766 . . . 4 (𝜑 → (𝐿s 𝐹) = (𝐸s 𝐹))
2711, 2ressbas2 17155 . . . . . 6 (𝐹𝐵𝐹 = (Base‘𝐾))
286, 27syl 17 . . . . 5 (𝜑𝐹 = (Base‘𝐾))
2928oveq2d 7368 . . . 4 (𝜑 → (𝐿s 𝐹) = (𝐿s (Base‘𝐾)))
3026, 29eqtr3d 2768 . . 3 (𝜑 → (𝐸s 𝐹) = (𝐿s (Base‘𝐾)))
3111, 30eqtrid 2778 . 2 (𝜑𝐾 = (𝐿s (Base‘𝐾)))
3210fldcrngd 20663 . . . . 5 (𝜑𝐿 ∈ CRing)
3332crngringd 20170 . . . 4 (𝜑𝐿 ∈ Ring)
3414fldcrngd 20663 . . . . . . 7 (𝜑𝐾 ∈ CRing)
3534crngringd 20170 . . . . . 6 (𝜑𝐾 ∈ Ring)
3611, 35eqeltrrid 2836 . . . . 5 (𝜑 → (𝐸s 𝐹) ∈ Ring)
3726, 36eqeltrd 2831 . . . 4 (𝜑 → (𝐿s 𝐹) ∈ Ring)
382, 20, 8fldgenssv 33288 . . . . . . 7 (𝜑 → (𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵)
391, 2ressbas2 17155 . . . . . . 7 ((𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵 → (𝐸 fldGen (𝐹𝐴)) = (Base‘𝐿))
4038, 39syl 17 . . . . . 6 (𝜑 → (𝐸 fldGen (𝐹𝐴)) = (Base‘𝐿))
4122, 40sseqtrd 3966 . . . . 5 (𝜑𝐹 ⊆ (Base‘𝐿))
4220drngringd 20658 . . . . . . 7 (𝜑𝐸 ∈ Ring)
43 sdrgsubrg 20712 . . . . . . . . 9 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
44 eqid 2731 . . . . . . . . . 10 (1r𝐸) = (1r𝐸)
4544subrg1cl 20501 . . . . . . . . 9 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
464, 43, 453syl 18 . . . . . . . 8 (𝜑 → (1r𝐸) ∈ 𝐹)
4722, 46sseldd 3930 . . . . . . 7 (𝜑 → (1r𝐸) ∈ (𝐸 fldGen (𝐹𝐴)))
481, 2, 44ress1r 33208 . . . . . . 7 ((𝐸 ∈ Ring ∧ (1r𝐸) ∈ (𝐸 fldGen (𝐹𝐴)) ∧ (𝐸 fldGen (𝐹𝐴)) ⊆ 𝐵) → (1r𝐸) = (1r𝐿))
4942, 47, 38, 48syl3anc 1373 . . . . . 6 (𝜑 → (1r𝐸) = (1r𝐿))
5049, 46eqeltrrd 2832 . . . . 5 (𝜑 → (1r𝐿) ∈ 𝐹)
5141, 50jca 511 . . . 4 (𝜑 → (𝐹 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝐹))
52 eqid 2731 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
53 eqid 2731 . . . . 5 (1r𝐿) = (1r𝐿)
5452, 53issubrg 20492 . . . 4 (𝐹 ∈ (SubRing‘𝐿) ↔ ((𝐿 ∈ Ring ∧ (𝐿s 𝐹) ∈ Ring) ∧ (𝐹 ⊆ (Base‘𝐿) ∧ (1r𝐿) ∈ 𝐹)))
5533, 37, 51, 54syl21anbrc 1345 . . 3 (𝜑𝐹 ∈ (SubRing‘𝐿))
5628, 55eqeltrrd 2832 . 2 (𝜑 → (Base‘𝐾) ∈ (SubRing‘𝐿))
57 brfldext 33665 . . 3 ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) → (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))))
5857biimpar 477 . 2 (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐿))) → 𝐿/FldExt𝐾)
5910, 14, 31, 56, 58syl22anc 838 1 (𝜑𝐿/FldExt𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  cin 3896  wss 3897   class class class wbr 5093  cfv 6487  (class class class)co 7352  Basecbs 17126  s cress 17147  1rcur 20105  Ringcrg 20157  SubRingcsubrg 20490  Fieldcfield 20651  SubDRingcsdrg 20707   fldGen cfldgen 33283  /FldExtcfldext 33658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-0g 17351  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-grp 18855  df-minusg 18856  df-subg 19042  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-dvr 20325  df-subrng 20467  df-subrg 20491  df-drng 20652  df-field 20653  df-sdrg 20708  df-fldgen 33284  df-fldext 33661
This theorem is referenced by:  fldextrspundgle  33698  fldextrspundglemul  33699  fldextrspundgdvdslem  33700  fldextrspundgdvds  33701  fldext2rspun  33702  rtelextdg2  33747  constrextdg2lem  33768  constrext2chnlem  33770
  Copyright terms: Public domain W3C validator