| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspundgle | Structured version Visualization version GIF version | ||
| Description: Inequality involving the degree of two different field extensions 𝐼 and 𝐽 of a same field 𝐹. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspunfld.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspunfld.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspunfld.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspunfld.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspunfld.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspunfld.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspunfld.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspundgle.1 | ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Ref | Expression |
|---|---|
| fldextrspundgle | ⊢ (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 2 | fldextrspunfld.i | . . . 4 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 3 | fldextrspundgle.1 | . . . 4 ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) | |
| 4 | fldextrspunfld.2 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 5 | fldextrspunfld.5 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 6 | fldextrspunfld.6 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 7 | 1 | sdrgss 20697 | . . . . 5 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 9 | 1, 2, 3, 4, 5, 8 | fldgenfldext 33654 | . . 3 ⊢ (𝜑 → 𝐸/FldExt𝐼) |
| 10 | extdgval 33639 | . . 3 ⊢ (𝐸/FldExt𝐼 → (𝐸[:]𝐼) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼)))) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝐸[:]𝐼) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼)))) |
| 12 | fldextrspunfld.k | . . . . . . . . 9 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 13 | fldextrspunfld.j | . . . . . . . . 9 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 14 | fldextrspunfld.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 15 | fldextrspunfld.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 16 | fldextrspunfld.7 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 17 | eqid 2729 | . . . . . . . . 9 ⊢ (RingSpan‘𝐿) = (RingSpan‘𝐿) | |
| 18 | eqid 2729 | . . . . . . . . 9 ⊢ ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)) = ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)) | |
| 19 | eqid 2729 | . . . . . . . . 9 ⊢ (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) = (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) | |
| 20 | 12, 2, 13, 4, 14, 15, 5, 6, 16, 17, 18, 19 | fldextrspunlem2 33663 | . . . . . . . 8 ⊢ (𝜑 → ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)) = (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 21 | 20 | oveq2d 7369 | . . . . . . 7 ⊢ (𝜑 → (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻)))) |
| 22 | 21, 3 | eqtr4di 2782 | . . . . . 6 ⊢ (𝜑 → (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) = 𝐸) |
| 23 | 22 | fveq2d 6830 | . . . . 5 ⊢ (𝜑 → (subringAlg ‘(𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)))) = (subringAlg ‘𝐸)) |
| 24 | 1 | sdrgss 20697 | . . . . . 6 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
| 25 | 2, 1 | ressbas2 17168 | . . . . . 6 ⊢ (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼)) |
| 26 | 5, 24, 25 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐺 = (Base‘𝐼)) |
| 27 | 23, 26 | fveq12d 6833 | . . . 4 ⊢ (𝜑 → ((subringAlg ‘(𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))))‘𝐺) = ((subringAlg ‘𝐸)‘(Base‘𝐼))) |
| 28 | 27 | fveq2d 6830 | . . 3 ⊢ (𝜑 → (dim‘((subringAlg ‘(𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))))‘𝐺)) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼)))) |
| 29 | 12, 2, 13, 4, 14, 15, 5, 6, 16, 17, 18, 19 | fldextrspunlem1 33661 | . . 3 ⊢ (𝜑 → (dim‘((subringAlg ‘(𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))))‘𝐺)) ≤ (𝐽[:]𝐾)) |
| 30 | 28, 29 | eqbrtrrd 5119 | . 2 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼))) ≤ (𝐽[:]𝐾)) |
| 31 | 11, 30 | eqbrtrd 5117 | 1 ⊢ (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ≤ cle 11169 ℕ0cn0 12403 Basecbs 17139 ↾s cress 17160 RingSpancrgspn 20514 Fieldcfield 20634 SubDRingcsdrg 20690 subringAlg csra 21094 fldGen cfldgen 33268 dimcldim 33584 /FldExtcfldext 33624 [:]cextdg 33626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-rpss 7663 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-inf 9352 df-oi 9421 df-r1 9679 df-rank 9680 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-xnn0 12477 df-z 12491 df-dec 12611 df-uz 12755 df-rp 12913 df-xadd 13034 df-fz 13430 df-fzo 13577 df-seq 13928 df-exp 13988 df-hash 14257 df-word 14440 df-lsw 14489 df-concat 14497 df-s1 14522 df-substr 14567 df-pfx 14597 df-s2 14774 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-clim 15414 df-sum 15613 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-starv 17195 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ocomp 17201 df-ds 17202 df-unif 17203 df-hom 17204 df-cco 17205 df-0g 17364 df-gsum 17365 df-prds 17370 df-pws 17372 df-mre 17507 df-mrc 17508 df-mri 17509 df-acs 17510 df-proset 18219 df-drs 18220 df-poset 18238 df-ipo 18453 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-mhm 18676 df-submnd 18677 df-grp 18834 df-minusg 18835 df-sbg 18836 df-mulg 18966 df-subg 19021 df-ghm 19111 df-cntz 19215 df-cntr 19216 df-lsm 19534 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-cring 20140 df-oppr 20241 df-dvdsr 20261 df-unit 20262 df-invr 20292 df-dvr 20305 df-nzr 20417 df-subrng 20450 df-subrg 20474 df-rgspn 20515 df-rlreg 20598 df-domn 20599 df-idom 20600 df-drng 20635 df-field 20636 df-sdrg 20691 df-lmod 20784 df-lss 20854 df-lsp 20894 df-lmhm 20945 df-lmim 20946 df-lbs 20998 df-lvec 21026 df-sra 21096 df-rgmod 21097 df-cnfld 21281 df-zring 21373 df-dsmm 21658 df-frlm 21673 df-uvc 21709 df-lindf 21732 df-linds 21733 df-assa 21779 df-ind 32813 df-fldgen 33269 df-dim 33585 df-fldext 33627 df-extdg 33628 |
| This theorem is referenced by: fldextrspundglemul 33665 |
| Copyright terms: Public domain | W3C validator |