| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspundgle | Structured version Visualization version GIF version | ||
| Description: Inequality involving the degree of two different field extensions 𝐼 and 𝐽 of a same field 𝐹. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspunfld.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspunfld.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspunfld.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspunfld.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspunfld.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspunfld.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspunfld.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspundgle.1 | ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Ref | Expression |
|---|---|
| fldextrspundgle | ⊢ (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 2 | fldextrspunfld.i | . . . 4 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 3 | fldextrspundgle.1 | . . . 4 ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) | |
| 4 | fldextrspunfld.2 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 5 | fldextrspunfld.5 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 6 | fldextrspunfld.6 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 7 | 1 | sdrgss 20708 | . . . . 5 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 9 | 1, 2, 3, 4, 5, 8 | fldgenfldext 33669 | . . 3 ⊢ (𝜑 → 𝐸/FldExt𝐼) |
| 10 | extdgval 33655 | . . 3 ⊢ (𝐸/FldExt𝐼 → (𝐸[:]𝐼) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼)))) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝐸[:]𝐼) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼)))) |
| 12 | fldextrspunfld.k | . . . . . . . . 9 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 13 | fldextrspunfld.j | . . . . . . . . 9 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 14 | fldextrspunfld.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 15 | fldextrspunfld.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 16 | fldextrspunfld.7 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 17 | eqid 2730 | . . . . . . . . 9 ⊢ (RingSpan‘𝐿) = (RingSpan‘𝐿) | |
| 18 | eqid 2730 | . . . . . . . . 9 ⊢ ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)) = ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)) | |
| 19 | eqid 2730 | . . . . . . . . 9 ⊢ (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) = (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) | |
| 20 | 12, 2, 13, 4, 14, 15, 5, 6, 16, 17, 18, 19 | fldextrspunlem2 33678 | . . . . . . . 8 ⊢ (𝜑 → ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)) = (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| 21 | 20 | oveq2d 7405 | . . . . . . 7 ⊢ (𝜑 → (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻)))) |
| 22 | 21, 3 | eqtr4di 2783 | . . . . . 6 ⊢ (𝜑 → (𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))) = 𝐸) |
| 23 | 22 | fveq2d 6864 | . . . . 5 ⊢ (𝜑 → (subringAlg ‘(𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻)))) = (subringAlg ‘𝐸)) |
| 24 | 1 | sdrgss 20708 | . . . . . 6 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
| 25 | 2, 1 | ressbas2 17214 | . . . . . 6 ⊢ (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼)) |
| 26 | 5, 24, 25 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐺 = (Base‘𝐼)) |
| 27 | 23, 26 | fveq12d 6867 | . . . 4 ⊢ (𝜑 → ((subringAlg ‘(𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))))‘𝐺) = ((subringAlg ‘𝐸)‘(Base‘𝐼))) |
| 28 | 27 | fveq2d 6864 | . . 3 ⊢ (𝜑 → (dim‘((subringAlg ‘(𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))))‘𝐺)) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼)))) |
| 29 | 12, 2, 13, 4, 14, 15, 5, 6, 16, 17, 18, 19 | fldextrspunlem1 33676 | . . 3 ⊢ (𝜑 → (dim‘((subringAlg ‘(𝐿 ↾s ((RingSpan‘𝐿)‘(𝐺 ∪ 𝐻))))‘𝐺)) ≤ (𝐽[:]𝐾)) |
| 30 | 28, 29 | eqbrtrrd 5133 | . 2 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼))) ≤ (𝐽[:]𝐾)) |
| 31 | 11, 30 | eqbrtrd 5131 | 1 ⊢ (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3914 ⊆ wss 3916 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ≤ cle 11215 ℕ0cn0 12448 Basecbs 17185 ↾s cress 17206 RingSpancrgspn 20525 Fieldcfield 20645 SubDRingcsdrg 20701 subringAlg csra 21084 fldGen cfldgen 33266 dimcldim 33600 /FldExtcfldext 33640 [:]cextdg 33642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-reg 9551 ax-inf2 9600 ax-ac2 10422 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-rpss 7701 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-sup 9399 df-inf 9400 df-oi 9469 df-r1 9723 df-rank 9724 df-dju 9860 df-card 9898 df-acn 9901 df-ac 10075 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-xnn0 12522 df-z 12536 df-dec 12656 df-uz 12800 df-rp 12958 df-xadd 13079 df-fz 13475 df-fzo 13622 df-seq 13973 df-exp 14033 df-hash 14302 df-word 14485 df-lsw 14534 df-concat 14542 df-s1 14567 df-substr 14612 df-pfx 14642 df-s2 14820 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-clim 15460 df-sum 15659 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ocomp 17247 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-mre 17553 df-mrc 17554 df-mri 17555 df-acs 17556 df-proset 18261 df-drs 18262 df-poset 18280 df-ipo 18493 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-cntr 19256 df-lsm 19572 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-nzr 20428 df-subrng 20461 df-subrg 20485 df-rgspn 20526 df-rlreg 20609 df-domn 20610 df-idom 20611 df-drng 20646 df-field 20647 df-sdrg 20702 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lmhm 20935 df-lmim 20936 df-lbs 20988 df-lvec 21016 df-sra 21086 df-rgmod 21087 df-cnfld 21271 df-zring 21363 df-dsmm 21647 df-frlm 21662 df-uvc 21698 df-lindf 21721 df-linds 21722 df-assa 21768 df-ind 32780 df-fldgen 33267 df-dim 33601 df-fldext 33643 df-extdg 33644 |
| This theorem is referenced by: fldextrspundglemul 33680 |
| Copyright terms: Public domain | W3C validator |