Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspundgle Structured version   Visualization version   GIF version

Theorem fldextrspundgle 33670
Description: Inequality involving the degree of two different field extensions 𝐼 and 𝐽 of a same field 𝐹. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunfld.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspundgle.1 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
Assertion
Ref Expression
fldextrspundgle (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾))

Proof of Theorem fldextrspundgle
StepHypRef Expression
1 eqid 2734 . . . 4 (Base‘𝐿) = (Base‘𝐿)
2 fldextrspunfld.i . . . 4 𝐼 = (𝐿s 𝐺)
3 fldextrspundgle.1 . . . 4 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
4 fldextrspunfld.2 . . . 4 (𝜑𝐿 ∈ Field)
5 fldextrspunfld.5 . . . 4 (𝜑𝐺 ∈ (SubDRing‘𝐿))
6 fldextrspunfld.6 . . . . 5 (𝜑𝐻 ∈ (SubDRing‘𝐿))
71sdrgss 20763 . . . . 5 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
86, 7syl 17 . . . 4 (𝜑𝐻 ⊆ (Base‘𝐿))
91, 2, 3, 4, 5, 8fldgenfldext 33660 . . 3 (𝜑𝐸/FldExt𝐼)
10 extdgval 33646 . . 3 (𝐸/FldExt𝐼 → (𝐸[:]𝐼) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼))))
119, 10syl 17 . 2 (𝜑 → (𝐸[:]𝐼) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼))))
12 fldextrspunfld.k . . . . . . . . 9 𝐾 = (𝐿s 𝐹)
13 fldextrspunfld.j . . . . . . . . 9 𝐽 = (𝐿s 𝐻)
14 fldextrspunfld.3 . . . . . . . . 9 (𝜑𝐹 ∈ (SubDRing‘𝐼))
15 fldextrspunfld.4 . . . . . . . . 9 (𝜑𝐹 ∈ (SubDRing‘𝐽))
16 fldextrspunfld.7 . . . . . . . . 9 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
17 eqid 2734 . . . . . . . . 9 (RingSpan‘𝐿) = (RingSpan‘𝐿)
18 eqid 2734 . . . . . . . . 9 ((RingSpan‘𝐿)‘(𝐺𝐻)) = ((RingSpan‘𝐿)‘(𝐺𝐻))
19 eqid 2734 . . . . . . . . 9 (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻)))
2012, 2, 13, 4, 14, 15, 5, 6, 16, 17, 18, 19fldextrspunlem2 33669 . . . . . . . 8 (𝜑 → ((RingSpan‘𝐿)‘(𝐺𝐻)) = (𝐿 fldGen (𝐺𝐻)))
2120oveq2d 7429 . . . . . . 7 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = (𝐿s (𝐿 fldGen (𝐺𝐻))))
2221, 3eqtr4di 2787 . . . . . 6 (𝜑 → (𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))) = 𝐸)
2322fveq2d 6890 . . . . 5 (𝜑 → (subringAlg ‘(𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻)))) = (subringAlg ‘𝐸))
241sdrgss 20763 . . . . . 6 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
252, 1ressbas2 17262 . . . . . 6 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼))
265, 24, 253syl 18 . . . . 5 (𝜑𝐺 = (Base‘𝐼))
2723, 26fveq12d 6893 . . . 4 (𝜑 → ((subringAlg ‘(𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))))‘𝐺) = ((subringAlg ‘𝐸)‘(Base‘𝐼)))
2827fveq2d 6890 . . 3 (𝜑 → (dim‘((subringAlg ‘(𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))))‘𝐺)) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼))))
2912, 2, 13, 4, 14, 15, 5, 6, 16, 17, 18, 19fldextrspunlem1 33667 . . 3 (𝜑 → (dim‘((subringAlg ‘(𝐿s ((RingSpan‘𝐿)‘(𝐺𝐻))))‘𝐺)) ≤ (𝐽[:]𝐾))
3028, 29eqbrtrrd 5147 . 2 (𝜑 → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐼))) ≤ (𝐽[:]𝐾))
3111, 30eqbrtrd 5145 1 (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cun 3929  wss 3931   class class class wbr 5123  cfv 6541  (class class class)co 7413  cle 11278  0cn0 12509  Basecbs 17230  s cress 17253  RingSpancrgspn 20579  Fieldcfield 20699  SubDRingcsdrg 20756  subringAlg csra 21139   fldGen cfldgen 33257  dimcldim 33589  /FldExtcfldext 33629  [:]cextdg 33632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-reg 9614  ax-inf2 9663  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-rpss 7725  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-inf 9465  df-oi 9532  df-r1 9786  df-rank 9787  df-dju 9923  df-card 9961  df-acn 9964  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-xadd 13137  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-word 14536  df-lsw 14584  df-concat 14592  df-s1 14617  df-substr 14662  df-pfx 14692  df-s2 14870  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ocomp 17295  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-0g 17458  df-gsum 17459  df-prds 17464  df-pws 17466  df-mre 17601  df-mrc 17602  df-mri 17603  df-acs 17604  df-proset 18311  df-drs 18312  df-poset 18330  df-ipo 18543  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cntr 19306  df-lsm 19623  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-oppr 20303  df-dvdsr 20326  df-unit 20327  df-invr 20357  df-dvr 20370  df-nzr 20482  df-subrng 20515  df-subrg 20539  df-rgspn 20580  df-rlreg 20663  df-domn 20664  df-idom 20665  df-drng 20700  df-field 20701  df-sdrg 20757  df-lmod 20829  df-lss 20899  df-lsp 20939  df-lmhm 20990  df-lmim 20991  df-lbs 21043  df-lvec 21071  df-sra 21141  df-rgmod 21142  df-cnfld 21328  df-zring 21421  df-dsmm 21707  df-frlm 21722  df-uvc 21758  df-lindf 21781  df-linds 21782  df-assa 21828  df-ind 32781  df-fldgen 33258  df-dim 33590  df-fldext 33633  df-extdg 33634
This theorem is referenced by:  fldextrspundglemul  33671
  Copyright terms: Public domain W3C validator