![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > madjusmdet | Structured version Visualization version GIF version |
Description: Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrices. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
Ref | Expression |
---|---|
madjusmdet.b | ⊢ 𝐵 = (Base‘𝐴) |
madjusmdet.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
madjusmdet.d | ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) |
madjusmdet.k | ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) |
madjusmdet.t | ⊢ · = (.r‘𝑅) |
madjusmdet.z | ⊢ 𝑍 = (ℤRHom‘𝑅) |
madjusmdet.e | ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) |
madjusmdet.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
madjusmdet.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
madjusmdet.i | ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
madjusmdet.j | ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
madjusmdet.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
Ref | Expression |
---|---|
madjusmdet | ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madjusmdet.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
2 | madjusmdet.a | . 2 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
3 | madjusmdet.d | . 2 ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) | |
4 | madjusmdet.k | . 2 ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) | |
5 | madjusmdet.t | . 2 ⊢ · = (.r‘𝑅) | |
6 | madjusmdet.z | . 2 ⊢ 𝑍 = (ℤRHom‘𝑅) | |
7 | madjusmdet.e | . 2 ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) | |
8 | madjusmdet.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
9 | madjusmdet.r | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
10 | madjusmdet.i | . 2 ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) | |
11 | madjusmdet.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) | |
12 | madjusmdet.m | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
13 | eqeq1 2744 | . . . 4 ⊢ (𝑘 = 𝑖 → (𝑘 = 1 ↔ 𝑖 = 1)) | |
14 | breq1 5169 | . . . . 5 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝐼 ↔ 𝑖 ≤ 𝐼)) | |
15 | oveq1 7455 | . . . . 5 ⊢ (𝑘 = 𝑖 → (𝑘 − 1) = (𝑖 − 1)) | |
16 | id 22 | . . . . 5 ⊢ (𝑘 = 𝑖 → 𝑘 = 𝑖) | |
17 | 14, 15, 16 | ifbieq12d 4576 | . . . 4 ⊢ (𝑘 = 𝑖 → if(𝑘 ≤ 𝐼, (𝑘 − 1), 𝑘) = if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)) |
18 | 13, 17 | ifbieq2d 4574 | . . 3 ⊢ (𝑘 = 𝑖 → if(𝑘 = 1, 𝐼, if(𝑘 ≤ 𝐼, (𝑘 − 1), 𝑘)) = if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
19 | 18 | cbvmptv 5279 | . 2 ⊢ (𝑘 ∈ (1...𝑁) ↦ if(𝑘 = 1, 𝐼, if(𝑘 ≤ 𝐼, (𝑘 − 1), 𝑘))) = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
20 | breq1 5169 | . . . . 5 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑁 ↔ 𝑖 ≤ 𝑁)) | |
21 | 20, 15, 16 | ifbieq12d 4576 | . . . 4 ⊢ (𝑘 = 𝑖 → if(𝑘 ≤ 𝑁, (𝑘 − 1), 𝑘) = if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖)) |
22 | 13, 21 | ifbieq2d 4574 | . . 3 ⊢ (𝑘 = 𝑖 → if(𝑘 = 1, 𝑁, if(𝑘 ≤ 𝑁, (𝑘 − 1), 𝑘)) = if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) |
23 | 22 | cbvmptv 5279 | . 2 ⊢ (𝑘 ∈ (1...𝑁) ↦ if(𝑘 = 1, 𝑁, if(𝑘 ≤ 𝑁, (𝑘 − 1), 𝑘))) = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) |
24 | eqeq1 2744 | . . . 4 ⊢ (𝑙 = 𝑗 → (𝑙 = 1 ↔ 𝑗 = 1)) | |
25 | breq1 5169 | . . . . 5 ⊢ (𝑙 = 𝑗 → (𝑙 ≤ 𝐽 ↔ 𝑗 ≤ 𝐽)) | |
26 | oveq1 7455 | . . . . 5 ⊢ (𝑙 = 𝑗 → (𝑙 − 1) = (𝑗 − 1)) | |
27 | id 22 | . . . . 5 ⊢ (𝑙 = 𝑗 → 𝑙 = 𝑗) | |
28 | 25, 26, 27 | ifbieq12d 4576 | . . . 4 ⊢ (𝑙 = 𝑗 → if(𝑙 ≤ 𝐽, (𝑙 − 1), 𝑙) = if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗)) |
29 | 24, 28 | ifbieq2d 4574 | . . 3 ⊢ (𝑙 = 𝑗 → if(𝑙 = 1, 𝐽, if(𝑙 ≤ 𝐽, (𝑙 − 1), 𝑙)) = if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) |
30 | 29 | cbvmptv 5279 | . 2 ⊢ (𝑙 ∈ (1...𝑁) ↦ if(𝑙 = 1, 𝐽, if(𝑙 ≤ 𝐽, (𝑙 − 1), 𝑙))) = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) |
31 | breq1 5169 | . . . . 5 ⊢ (𝑙 = 𝑗 → (𝑙 ≤ 𝑁 ↔ 𝑗 ≤ 𝑁)) | |
32 | 31, 26, 27 | ifbieq12d 4576 | . . . 4 ⊢ (𝑙 = 𝑗 → if(𝑙 ≤ 𝑁, (𝑙 − 1), 𝑙) = if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗)) |
33 | 24, 32 | ifbieq2d 4574 | . . 3 ⊢ (𝑙 = 𝑗 → if(𝑙 = 1, 𝑁, if(𝑙 ≤ 𝑁, (𝑙 − 1), 𝑙)) = if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) |
34 | 33 | cbvmptv 5279 | . 2 ⊢ (𝑙 ∈ (1...𝑁) ↦ if(𝑙 = 1, 𝑁, if(𝑙 ≤ 𝑁, (𝑙 − 1), 𝑙))) = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 23, 30, 34 | madjusmdetlem4 33776 | 1 ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 1c1 11185 + caddc 11187 ≤ cle 11325 − cmin 11520 -cneg 11521 ℕcn 12293 ...cfz 13567 ↑cexp 14112 Basecbs 17258 .rcmulr 17312 CRingccrg 20261 ℤRHomczrh 21533 Mat cmat 22432 maDet cmdat 22611 maAdju cmadu 22659 subMat1csmat 33739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-xor 1509 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-word 14563 df-lsw 14611 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-splice 14798 df-reverse 14807 df-s2 14897 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-efmnd 18904 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-ghm 19253 df-gim 19299 df-cntz 19357 df-oppg 19386 df-symg 19411 df-pmtr 19484 df-psgn 19533 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-drng 20753 df-sra 21195 df-rgmod 21196 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-dsmm 21775 df-frlm 21790 df-mat 22433 df-marrep 22585 df-subma 22604 df-mdet 22612 df-madu 22661 df-minmar1 22662 df-smat 33740 |
This theorem is referenced by: mdetlap 33778 |
Copyright terms: Public domain | W3C validator |