| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > madjusmdet | Structured version Visualization version GIF version | ||
| Description: Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrices. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
| Ref | Expression |
|---|---|
| madjusmdet.b | ⊢ 𝐵 = (Base‘𝐴) |
| madjusmdet.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
| madjusmdet.d | ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) |
| madjusmdet.k | ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) |
| madjusmdet.t | ⊢ · = (.r‘𝑅) |
| madjusmdet.z | ⊢ 𝑍 = (ℤRHom‘𝑅) |
| madjusmdet.e | ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) |
| madjusmdet.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| madjusmdet.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| madjusmdet.i | ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
| madjusmdet.j | ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
| madjusmdet.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| madjusmdet | ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madjusmdet.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 2 | madjusmdet.a | . 2 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
| 3 | madjusmdet.d | . 2 ⊢ 𝐷 = ((1...𝑁) maDet 𝑅) | |
| 4 | madjusmdet.k | . 2 ⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) | |
| 5 | madjusmdet.t | . 2 ⊢ · = (.r‘𝑅) | |
| 6 | madjusmdet.z | . 2 ⊢ 𝑍 = (ℤRHom‘𝑅) | |
| 7 | madjusmdet.e | . 2 ⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) | |
| 8 | madjusmdet.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 9 | madjusmdet.r | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 10 | madjusmdet.i | . 2 ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) | |
| 11 | madjusmdet.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) | |
| 12 | madjusmdet.m | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 13 | eqeq1 2735 | . . . 4 ⊢ (𝑘 = 𝑖 → (𝑘 = 1 ↔ 𝑖 = 1)) | |
| 14 | breq1 5092 | . . . . 5 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝐼 ↔ 𝑖 ≤ 𝐼)) | |
| 15 | oveq1 7353 | . . . . 5 ⊢ (𝑘 = 𝑖 → (𝑘 − 1) = (𝑖 − 1)) | |
| 16 | id 22 | . . . . 5 ⊢ (𝑘 = 𝑖 → 𝑘 = 𝑖) | |
| 17 | 14, 15, 16 | ifbieq12d 4501 | . . . 4 ⊢ (𝑘 = 𝑖 → if(𝑘 ≤ 𝐼, (𝑘 − 1), 𝑘) = if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)) |
| 18 | 13, 17 | ifbieq2d 4499 | . . 3 ⊢ (𝑘 = 𝑖 → if(𝑘 = 1, 𝐼, if(𝑘 ≤ 𝐼, (𝑘 − 1), 𝑘)) = if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
| 19 | 18 | cbvmptv 5193 | . 2 ⊢ (𝑘 ∈ (1...𝑁) ↦ if(𝑘 = 1, 𝐼, if(𝑘 ≤ 𝐼, (𝑘 − 1), 𝑘))) = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
| 20 | breq1 5092 | . . . . 5 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑁 ↔ 𝑖 ≤ 𝑁)) | |
| 21 | 20, 15, 16 | ifbieq12d 4501 | . . . 4 ⊢ (𝑘 = 𝑖 → if(𝑘 ≤ 𝑁, (𝑘 − 1), 𝑘) = if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖)) |
| 22 | 13, 21 | ifbieq2d 4499 | . . 3 ⊢ (𝑘 = 𝑖 → if(𝑘 = 1, 𝑁, if(𝑘 ≤ 𝑁, (𝑘 − 1), 𝑘)) = if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) |
| 23 | 22 | cbvmptv 5193 | . 2 ⊢ (𝑘 ∈ (1...𝑁) ↦ if(𝑘 = 1, 𝑁, if(𝑘 ≤ 𝑁, (𝑘 − 1), 𝑘))) = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) |
| 24 | eqeq1 2735 | . . . 4 ⊢ (𝑙 = 𝑗 → (𝑙 = 1 ↔ 𝑗 = 1)) | |
| 25 | breq1 5092 | . . . . 5 ⊢ (𝑙 = 𝑗 → (𝑙 ≤ 𝐽 ↔ 𝑗 ≤ 𝐽)) | |
| 26 | oveq1 7353 | . . . . 5 ⊢ (𝑙 = 𝑗 → (𝑙 − 1) = (𝑗 − 1)) | |
| 27 | id 22 | . . . . 5 ⊢ (𝑙 = 𝑗 → 𝑙 = 𝑗) | |
| 28 | 25, 26, 27 | ifbieq12d 4501 | . . . 4 ⊢ (𝑙 = 𝑗 → if(𝑙 ≤ 𝐽, (𝑙 − 1), 𝑙) = if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗)) |
| 29 | 24, 28 | ifbieq2d 4499 | . . 3 ⊢ (𝑙 = 𝑗 → if(𝑙 = 1, 𝐽, if(𝑙 ≤ 𝐽, (𝑙 − 1), 𝑙)) = if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) |
| 30 | 29 | cbvmptv 5193 | . 2 ⊢ (𝑙 ∈ (1...𝑁) ↦ if(𝑙 = 1, 𝐽, if(𝑙 ≤ 𝐽, (𝑙 − 1), 𝑙))) = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) |
| 31 | breq1 5092 | . . . . 5 ⊢ (𝑙 = 𝑗 → (𝑙 ≤ 𝑁 ↔ 𝑗 ≤ 𝑁)) | |
| 32 | 31, 26, 27 | ifbieq12d 4501 | . . . 4 ⊢ (𝑙 = 𝑗 → if(𝑙 ≤ 𝑁, (𝑙 − 1), 𝑙) = if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗)) |
| 33 | 24, 32 | ifbieq2d 4499 | . . 3 ⊢ (𝑙 = 𝑗 → if(𝑙 = 1, 𝑁, if(𝑙 ≤ 𝑁, (𝑙 − 1), 𝑙)) = if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) |
| 34 | 33 | cbvmptv 5193 | . 2 ⊢ (𝑙 ∈ (1...𝑁) ↦ if(𝑙 = 1, 𝑁, if(𝑙 ≤ 𝑁, (𝑙 − 1), 𝑙))) = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) |
| 35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 23, 30, 34 | madjusmdetlem4 33843 | 1 ⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 1c1 11007 + caddc 11009 ≤ cle 11147 − cmin 11344 -cneg 11345 ℕcn 12125 ...cfz 13407 ↑cexp 13968 Basecbs 17120 .rcmulr 17162 CRingccrg 20152 ℤRHomczrh 21436 Mat cmat 22322 maDet cmdat 22499 maAdju cmadu 22547 subMat1csmat 33806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-mulg 18981 df-subg 19036 df-ghm 19125 df-gim 19171 df-cntz 19229 df-oppg 19258 df-symg 19282 df-pmtr 19354 df-psgn 19403 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-drng 20646 df-sra 21107 df-rgmod 21108 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-dsmm 21669 df-frlm 21684 df-mat 22323 df-marrep 22473 df-subma 22492 df-mdet 22500 df-madu 22549 df-minmar1 22550 df-smat 33807 |
| This theorem is referenced by: mdetlap 33845 |
| Copyright terms: Public domain | W3C validator |