![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minveclem5 | Structured version Visualization version GIF version |
Description: Lemma for minvec 24953. Discharge the assumptions in minveclem4 24949. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
minvec.x | β’ π = (Baseβπ) |
minvec.m | β’ β = (-gβπ) |
minvec.n | β’ π = (normβπ) |
minvec.u | β’ (π β π β βPreHil) |
minvec.y | β’ (π β π β (LSubSpβπ)) |
minvec.w | β’ (π β (π βΎs π) β CMetSp) |
minvec.a | β’ (π β π΄ β π) |
minvec.j | β’ π½ = (TopOpenβπ) |
minvec.r | β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) |
minvec.s | β’ π = inf(π , β, < ) |
minvec.d | β’ π· = ((distβπ) βΎ (π Γ π)) |
Ref | Expression |
---|---|
minveclem5 | β’ (π β βπ₯ β π βπ¦ β π (πβ(π΄ β π₯)) β€ (πβ(π΄ β π¦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.x | . 2 β’ π = (Baseβπ) | |
2 | minvec.m | . 2 β’ β = (-gβπ) | |
3 | minvec.n | . 2 β’ π = (normβπ) | |
4 | minvec.u | . 2 β’ (π β π β βPreHil) | |
5 | minvec.y | . 2 β’ (π β π β (LSubSpβπ)) | |
6 | minvec.w | . 2 β’ (π β (π βΎs π) β CMetSp) | |
7 | minvec.a | . 2 β’ (π β π΄ β π) | |
8 | minvec.j | . 2 β’ π½ = (TopOpenβπ) | |
9 | minvec.r | . 2 β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) | |
10 | minvec.s | . 2 β’ π = inf(π , β, < ) | |
11 | minvec.d | . 2 β’ π· = ((distβπ) βΎ (π Γ π)) | |
12 | oveq2 7417 | . . . . . . 7 β’ (π = π β ((πβ2) + π ) = ((πβ2) + π)) | |
13 | 12 | breq2d 5161 | . . . . . 6 β’ (π = π β (((π΄π·π§)β2) β€ ((πβ2) + π ) β ((π΄π·π§)β2) β€ ((πβ2) + π))) |
14 | 13 | rabbidv 3441 | . . . . 5 β’ (π = π β {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )} = {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π)}) |
15 | oveq2 7417 | . . . . . . . 8 β’ (π§ = π¦ β (π΄π·π§) = (π΄π·π¦)) | |
16 | 15 | oveq1d 7424 | . . . . . . 7 β’ (π§ = π¦ β ((π΄π·π§)β2) = ((π΄π·π¦)β2)) |
17 | 16 | breq1d 5159 | . . . . . 6 β’ (π§ = π¦ β (((π΄π·π§)β2) β€ ((πβ2) + π) β ((π΄π·π¦)β2) β€ ((πβ2) + π))) |
18 | 17 | cbvrabv 3443 | . . . . 5 β’ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π)} = {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)} |
19 | 14, 18 | eqtrdi 2789 | . . . 4 β’ (π = π β {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )} = {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) |
20 | 19 | cbvmptv 5262 | . . 3 β’ (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )}) = (π β β+ β¦ {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) |
21 | 20 | rneqi 5937 | . 2 β’ ran (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )}) = ran (π β β+ β¦ {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) |
22 | eqid 2733 | . 2 β’ βͺ (π½ fLim (πfilGenran (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )}))) = βͺ (π½ fLim (πfilGenran (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )}))) | |
23 | eqid 2733 | . 2 β’ (((((π΄π·βͺ (π½ fLim (πfilGenran (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )})))) + π) / 2)β2) β (πβ2)) = (((((π΄π·βͺ (π½ fLim (πfilGenran (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )})))) + π) / 2)β2) β (πβ2)) | |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 22, 23 | minveclem4 24949 | 1 β’ (π β βπ₯ β π βπ¦ β π (πβ(π΄ β π₯)) β€ (πβ(π΄ β π¦))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 βwral 3062 βwrex 3071 {crab 3433 βͺ cuni 4909 class class class wbr 5149 β¦ cmpt 5232 Γ cxp 5675 ran crn 5678 βΎ cres 5679 βcfv 6544 (class class class)co 7409 infcinf 9436 βcr 11109 + caddc 11113 < clt 11248 β€ cle 11249 β cmin 11444 / cdiv 11871 2c2 12267 β+crp 12974 βcexp 14027 Basecbs 17144 βΎs cress 17173 distcds 17206 TopOpenctopn 17367 -gcsg 18821 LSubSpclss 20542 filGencfg 20933 fLim cflim 23438 normcnm 24085 βPreHilccph 24683 CMetSpccms 24849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fi 9406 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ico 13330 df-icc 13331 df-fz 13485 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-rest 17368 df-0g 17387 df-topgen 17389 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-grp 18822 df-minusg 18823 df-sbg 18824 df-mulg 18951 df-subg 19003 df-ghm 19090 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 df-rnghom 20251 df-subrg 20317 df-drng 20359 df-staf 20453 df-srng 20454 df-lmod 20473 df-lss 20543 df-lmhm 20633 df-lvec 20714 df-sra 20785 df-rgmod 20786 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-fbas 20941 df-fg 20942 df-cnfld 20945 df-phl 21179 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-ntr 22524 df-cls 22525 df-nei 22602 df-haus 22819 df-fil 23350 df-flim 23443 df-xms 23826 df-ms 23827 df-nm 24091 df-ngp 24092 df-nlm 24095 df-clm 24579 df-cph 24685 df-cfil 24772 df-cmet 24774 df-cms 24852 |
This theorem is referenced by: minveclem7 24952 |
Copyright terms: Public domain | W3C validator |