![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minveclem5 | Structured version Visualization version GIF version |
Description: Lemma for minvec 25380. Discharge the assumptions in minveclem4 25376. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
minvec.x | β’ π = (Baseβπ) |
minvec.m | β’ β = (-gβπ) |
minvec.n | β’ π = (normβπ) |
minvec.u | β’ (π β π β βPreHil) |
minvec.y | β’ (π β π β (LSubSpβπ)) |
minvec.w | β’ (π β (π βΎs π) β CMetSp) |
minvec.a | β’ (π β π΄ β π) |
minvec.j | β’ π½ = (TopOpenβπ) |
minvec.r | β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) |
minvec.s | β’ π = inf(π , β, < ) |
minvec.d | β’ π· = ((distβπ) βΎ (π Γ π)) |
Ref | Expression |
---|---|
minveclem5 | β’ (π β βπ₯ β π βπ¦ β π (πβ(π΄ β π₯)) β€ (πβ(π΄ β π¦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.x | . 2 β’ π = (Baseβπ) | |
2 | minvec.m | . 2 β’ β = (-gβπ) | |
3 | minvec.n | . 2 β’ π = (normβπ) | |
4 | minvec.u | . 2 β’ (π β π β βPreHil) | |
5 | minvec.y | . 2 β’ (π β π β (LSubSpβπ)) | |
6 | minvec.w | . 2 β’ (π β (π βΎs π) β CMetSp) | |
7 | minvec.a | . 2 β’ (π β π΄ β π) | |
8 | minvec.j | . 2 β’ π½ = (TopOpenβπ) | |
9 | minvec.r | . 2 β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) | |
10 | minvec.s | . 2 β’ π = inf(π , β, < ) | |
11 | minvec.d | . 2 β’ π· = ((distβπ) βΎ (π Γ π)) | |
12 | oveq2 7423 | . . . . . . 7 β’ (π = π β ((πβ2) + π ) = ((πβ2) + π)) | |
13 | 12 | breq2d 5155 | . . . . . 6 β’ (π = π β (((π΄π·π§)β2) β€ ((πβ2) + π ) β ((π΄π·π§)β2) β€ ((πβ2) + π))) |
14 | 13 | rabbidv 3427 | . . . . 5 β’ (π = π β {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )} = {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π)}) |
15 | oveq2 7423 | . . . . . . . 8 β’ (π§ = π¦ β (π΄π·π§) = (π΄π·π¦)) | |
16 | 15 | oveq1d 7430 | . . . . . . 7 β’ (π§ = π¦ β ((π΄π·π§)β2) = ((π΄π·π¦)β2)) |
17 | 16 | breq1d 5153 | . . . . . 6 β’ (π§ = π¦ β (((π΄π·π§)β2) β€ ((πβ2) + π) β ((π΄π·π¦)β2) β€ ((πβ2) + π))) |
18 | 17 | cbvrabv 3430 | . . . . 5 β’ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π)} = {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)} |
19 | 14, 18 | eqtrdi 2781 | . . . 4 β’ (π = π β {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )} = {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) |
20 | 19 | cbvmptv 5256 | . . 3 β’ (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )}) = (π β β+ β¦ {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) |
21 | 20 | rneqi 5933 | . 2 β’ ran (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )}) = ran (π β β+ β¦ {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) |
22 | eqid 2725 | . 2 β’ βͺ (π½ fLim (πfilGenran (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )}))) = βͺ (π½ fLim (πfilGenran (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )}))) | |
23 | eqid 2725 | . 2 β’ (((((π΄π·βͺ (π½ fLim (πfilGenran (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )})))) + π) / 2)β2) β (πβ2)) = (((((π΄π·βͺ (π½ fLim (πfilGenran (π β β+ β¦ {π§ β π β£ ((π΄π·π§)β2) β€ ((πβ2) + π )})))) + π) / 2)β2) β (πβ2)) | |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 22, 23 | minveclem4 25376 | 1 β’ (π β βπ₯ β π βπ¦ β π (πβ(π΄ β π₯)) β€ (πβ(π΄ β π¦))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βwral 3051 βwrex 3060 {crab 3419 βͺ cuni 4903 class class class wbr 5143 β¦ cmpt 5226 Γ cxp 5670 ran crn 5673 βΎ cres 5674 βcfv 6542 (class class class)co 7415 infcinf 9462 βcr 11135 + caddc 11139 < clt 11276 β€ cle 11277 β cmin 11472 / cdiv 11899 2c2 12295 β+crp 13004 βcexp 14056 Basecbs 17177 βΎs cress 17206 distcds 17239 TopOpenctopn 17400 -gcsg 18894 LSubSpclss 20817 filGencfg 21270 fLim cflim 23854 normcnm 24501 βPreHilccph 25110 CMetSpccms 25276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 ax-mulf 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-tpos 8228 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fi 9432 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-q 12961 df-rp 13005 df-xneg 13122 df-xadd 13123 df-xmul 13124 df-ico 13360 df-icc 13361 df-fz 13515 df-seq 13997 df-exp 14057 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-starv 17245 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-unif 17253 df-rest 17401 df-0g 17420 df-topgen 17422 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-mhm 18737 df-grp 18895 df-minusg 18896 df-sbg 18897 df-mulg 19026 df-subg 19080 df-ghm 19170 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-cring 20178 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-dvr 20342 df-rhm 20413 df-subrg 20510 df-drng 20628 df-staf 20727 df-srng 20728 df-lmod 20747 df-lss 20818 df-lmhm 20909 df-lvec 20990 df-sra 21060 df-rgmod 21061 df-psmet 21273 df-xmet 21274 df-met 21275 df-bl 21276 df-mopn 21277 df-fbas 21278 df-fg 21279 df-cnfld 21282 df-phl 21560 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22865 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-haus 23235 df-fil 23766 df-flim 23859 df-xms 24242 df-ms 24243 df-nm 24507 df-ngp 24508 df-nlm 24511 df-clm 25006 df-cph 25112 df-cfil 25199 df-cmet 25201 df-cms 25279 |
This theorem is referenced by: minveclem7 25379 |
Copyright terms: Public domain | W3C validator |