Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > minveclem5 | Structured version Visualization version GIF version |
Description: Lemma for minvec 24505. Discharge the assumptions in minveclem4 24501. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
minvec.m | ⊢ − = (-g‘𝑈) |
minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
minvec.d | ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
minveclem5 | ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.x | . 2 ⊢ 𝑋 = (Base‘𝑈) | |
2 | minvec.m | . 2 ⊢ − = (-g‘𝑈) | |
3 | minvec.n | . 2 ⊢ 𝑁 = (norm‘𝑈) | |
4 | minvec.u | . 2 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
5 | minvec.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
6 | minvec.w | . 2 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
7 | minvec.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
8 | minvec.j | . 2 ⊢ 𝐽 = (TopOpen‘𝑈) | |
9 | minvec.r | . 2 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
10 | minvec.s | . 2 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
11 | minvec.d | . 2 ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) | |
12 | oveq2 7263 | . . . . . . 7 ⊢ (𝑠 = 𝑟 → ((𝑆↑2) + 𝑠) = ((𝑆↑2) + 𝑟)) | |
13 | 12 | breq2d 5082 | . . . . . 6 ⊢ (𝑠 = 𝑟 → (((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠) ↔ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟))) |
14 | 13 | rabbidv 3404 | . . . . 5 ⊢ (𝑠 = 𝑟 → {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)} = {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
15 | oveq2 7263 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝐴𝐷𝑧) = (𝐴𝐷𝑦)) | |
16 | 15 | oveq1d 7270 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → ((𝐴𝐷𝑧)↑2) = ((𝐴𝐷𝑦)↑2)) |
17 | 16 | breq1d 5080 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟))) |
18 | 17 | cbvrabv 3416 | . . . . 5 ⊢ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} |
19 | 14, 18 | eqtrdi 2795 | . . . 4 ⊢ (𝑠 = 𝑟 → {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)} = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
20 | 19 | cbvmptv 5183 | . . 3 ⊢ (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
21 | 20 | rneqi 5835 | . 2 ⊢ ran (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}) = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
22 | eqid 2738 | . 2 ⊢ ∪ (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}))) = ∪ (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}))) | |
23 | eqid 2738 | . 2 ⊢ (((((𝐴𝐷∪ (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)})))) + 𝑆) / 2)↑2) − (𝑆↑2)) = (((((𝐴𝐷∪ (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)})))) + 𝑆) / 2)↑2) − (𝑆↑2)) | |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 22, 23 | minveclem4 24501 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 ran crn 5581 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 infcinf 9130 ℝcr 10801 + caddc 10805 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 2c2 11958 ℝ+crp 12659 ↑cexp 13710 Basecbs 16840 ↾s cress 16867 distcds 16897 TopOpenctopn 17049 -gcsg 18494 LSubSpclss 20108 filGencfg 20499 fLim cflim 22993 normcnm 23638 ℂPreHilccph 24235 CMetSpccms 24401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ico 13014 df-icc 13015 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-0g 17069 df-topgen 17071 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-subrg 19937 df-staf 20020 df-srng 20021 df-lmod 20040 df-lss 20109 df-lmhm 20199 df-lvec 20280 df-sra 20349 df-rgmod 20350 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-phl 20743 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-haus 22374 df-fil 22905 df-flim 22998 df-xms 23381 df-ms 23382 df-nm 23644 df-ngp 23645 df-nlm 23648 df-clm 24132 df-cph 24237 df-cfil 24324 df-cmet 24326 df-cms 24404 |
This theorem is referenced by: minveclem7 24504 |
Copyright terms: Public domain | W3C validator |