MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem5 Structured version   Visualization version   GIF version

Theorem minveclem5 25492
Description: Lemma for minvec 25495. Discharge the assumptions in minveclem4 25491. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem5 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐴,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦

Proof of Theorem minveclem5
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minvec.x . 2 𝑋 = (Base‘𝑈)
2 minvec.m . 2 = (-g𝑈)
3 minvec.n . 2 𝑁 = (norm‘𝑈)
4 minvec.u . 2 (𝜑𝑈 ∈ ℂPreHil)
5 minvec.y . 2 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.w . 2 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
7 minvec.a . 2 (𝜑𝐴𝑋)
8 minvec.j . 2 𝐽 = (TopOpen‘𝑈)
9 minvec.r . 2 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
10 minvec.s . 2 𝑆 = inf(𝑅, ℝ, < )
11 minvec.d . 2 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
12 oveq2 7446 . . . . . . 7 (𝑠 = 𝑟 → ((𝑆↑2) + 𝑠) = ((𝑆↑2) + 𝑟))
1312breq2d 5163 . . . . . 6 (𝑠 = 𝑟 → (((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠) ↔ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟)))
1413rabbidv 3444 . . . . 5 (𝑠 = 𝑟 → {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)} = {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟)})
15 oveq2 7446 . . . . . . . 8 (𝑧 = 𝑦 → (𝐴𝐷𝑧) = (𝐴𝐷𝑦))
1615oveq1d 7453 . . . . . . 7 (𝑧 = 𝑦 → ((𝐴𝐷𝑧)↑2) = ((𝐴𝐷𝑦)↑2))
1716breq1d 5161 . . . . . 6 (𝑧 = 𝑦 → (((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)))
1817cbvrabv 3447 . . . . 5 {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}
1914, 18eqtrdi 2793 . . . 4 (𝑠 = 𝑟 → {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
2019cbvmptv 5264 . . 3 (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
2120rneqi 5955 . 2 ran (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}) = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
22 eqid 2737 . 2 (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}))) = (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)})))
23 eqid 2737 . 2 (((((𝐴𝐷 (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)})))) + 𝑆) / 2)↑2) − (𝑆↑2)) = (((((𝐴𝐷 (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)})))) + 𝑆) / 2)↑2) − (𝑆↑2))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 22, 23minveclem4 25491 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3061  wrex 3070  {crab 3436   cuni 4915   class class class wbr 5151  cmpt 5234   × cxp 5691  ran crn 5694  cres 5695  cfv 6569  (class class class)co 7438  infcinf 9488  cr 11161   + caddc 11165   < clt 11302  cle 11303  cmin 11499   / cdiv 11927  2c2 12328  +crp 13041  cexp 14108  Basecbs 17254  s cress 17283  distcds 17316  TopOpenctopn 17477  -gcsg 18975  LSubSpclss 20956  filGencfg 21380   fLim cflim 23967  normcnm 24614  ℂPreHilccph 25225  CMetSpccms 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240  ax-addf 11241  ax-mulf 11242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-tpos 8259  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-fi 9458  df-sup 9489  df-inf 9490  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-q 12998  df-rp 13042  df-xneg 13161  df-xadd 13162  df-xmul 13163  df-ico 13399  df-icc 13400  df-fz 13554  df-seq 14049  df-exp 14109  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-starv 17322  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-unif 17330  df-rest 17478  df-0g 17497  df-topgen 17499  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrg 20596  df-drng 20757  df-staf 20866  df-srng 20867  df-lmod 20886  df-lss 20957  df-lmhm 21048  df-lvec 21129  df-sra 21199  df-rgmod 21200  df-psmet 21383  df-xmet 21384  df-met 21385  df-bl 21386  df-mopn 21387  df-fbas 21388  df-fg 21389  df-cnfld 21392  df-phl 21671  df-top 22925  df-topon 22942  df-topsp 22964  df-bases 22978  df-cld 23052  df-ntr 23053  df-cls 23054  df-nei 23131  df-haus 23348  df-fil 23879  df-flim 23972  df-xms 24355  df-ms 24356  df-nm 24620  df-ngp 24621  df-nlm 24624  df-clm 25121  df-cph 25227  df-cfil 25314  df-cmet 25316  df-cms 25394
This theorem is referenced by:  minveclem7  25494
  Copyright terms: Public domain W3C validator