MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem5 Structured version   Visualization version   GIF version

Theorem minveclem5 25339
Description: Lemma for minvec 25342. Discharge the assumptions in minveclem4 25338. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem5 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐴,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦

Proof of Theorem minveclem5
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minvec.x . 2 𝑋 = (Base‘𝑈)
2 minvec.m . 2 = (-g𝑈)
3 minvec.n . 2 𝑁 = (norm‘𝑈)
4 minvec.u . 2 (𝜑𝑈 ∈ ℂPreHil)
5 minvec.y . 2 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.w . 2 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
7 minvec.a . 2 (𝜑𝐴𝑋)
8 minvec.j . 2 𝐽 = (TopOpen‘𝑈)
9 minvec.r . 2 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
10 minvec.s . 2 𝑆 = inf(𝑅, ℝ, < )
11 minvec.d . 2 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
12 oveq2 7397 . . . . . . 7 (𝑠 = 𝑟 → ((𝑆↑2) + 𝑠) = ((𝑆↑2) + 𝑟))
1312breq2d 5121 . . . . . 6 (𝑠 = 𝑟 → (((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠) ↔ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟)))
1413rabbidv 3416 . . . . 5 (𝑠 = 𝑟 → {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)} = {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟)})
15 oveq2 7397 . . . . . . . 8 (𝑧 = 𝑦 → (𝐴𝐷𝑧) = (𝐴𝐷𝑦))
1615oveq1d 7404 . . . . . . 7 (𝑧 = 𝑦 → ((𝐴𝐷𝑧)↑2) = ((𝐴𝐷𝑦)↑2))
1716breq1d 5119 . . . . . 6 (𝑧 = 𝑦 → (((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)))
1817cbvrabv 3419 . . . . 5 {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}
1914, 18eqtrdi 2781 . . . 4 (𝑠 = 𝑟 → {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
2019cbvmptv 5213 . . 3 (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
2120rneqi 5903 . 2 ran (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}) = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
22 eqid 2730 . 2 (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}))) = (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)})))
23 eqid 2730 . 2 (((((𝐴𝐷 (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)})))) + 𝑆) / 2)↑2) − (𝑆↑2)) = (((((𝐴𝐷 (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)})))) + 𝑆) / 2)↑2) − (𝑆↑2))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 22, 23minveclem4 25338 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408   cuni 4873   class class class wbr 5109  cmpt 5190   × cxp 5638  ran crn 5641  cres 5642  cfv 6513  (class class class)co 7389  infcinf 9398  cr 11073   + caddc 11077   < clt 11214  cle 11215  cmin 11411   / cdiv 11841  2c2 12242  +crp 12957  cexp 14032  Basecbs 17185  s cress 17206  distcds 17235  TopOpenctopn 17390  -gcsg 18873  LSubSpclss 20843  filGencfg 21259   fLim cflim 23827  normcnm 24470  ℂPreHilccph 25072  CMetSpccms 25238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fi 9368  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ico 13318  df-icc 13319  df-fz 13475  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-rest 17391  df-0g 17410  df-topgen 17412  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-rhm 20387  df-subrg 20485  df-drng 20646  df-staf 20754  df-srng 20755  df-lmod 20774  df-lss 20844  df-lmhm 20935  df-lvec 21016  df-sra 21086  df-rgmod 21087  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-phl 21541  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-haus 23208  df-fil 23739  df-flim 23832  df-xms 24214  df-ms 24215  df-nm 24476  df-ngp 24477  df-nlm 24480  df-clm 24969  df-cph 25074  df-cfil 25161  df-cmet 25163  df-cms 25241
This theorem is referenced by:  minveclem7  25341
  Copyright terms: Public domain W3C validator