Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > minveclem5 | Structured version Visualization version GIF version |
Description: Lemma for minvec 24598. Discharge the assumptions in minveclem4 24594. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
minvec.m | ⊢ − = (-g‘𝑈) |
minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
minvec.d | ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
minveclem5 | ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.x | . 2 ⊢ 𝑋 = (Base‘𝑈) | |
2 | minvec.m | . 2 ⊢ − = (-g‘𝑈) | |
3 | minvec.n | . 2 ⊢ 𝑁 = (norm‘𝑈) | |
4 | minvec.u | . 2 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
5 | minvec.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
6 | minvec.w | . 2 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
7 | minvec.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
8 | minvec.j | . 2 ⊢ 𝐽 = (TopOpen‘𝑈) | |
9 | minvec.r | . 2 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
10 | minvec.s | . 2 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
11 | minvec.d | . 2 ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) | |
12 | oveq2 7279 | . . . . . . 7 ⊢ (𝑠 = 𝑟 → ((𝑆↑2) + 𝑠) = ((𝑆↑2) + 𝑟)) | |
13 | 12 | breq2d 5091 | . . . . . 6 ⊢ (𝑠 = 𝑟 → (((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠) ↔ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟))) |
14 | 13 | rabbidv 3413 | . . . . 5 ⊢ (𝑠 = 𝑟 → {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)} = {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
15 | oveq2 7279 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝐴𝐷𝑧) = (𝐴𝐷𝑦)) | |
16 | 15 | oveq1d 7286 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → ((𝐴𝐷𝑧)↑2) = ((𝐴𝐷𝑦)↑2)) |
17 | 16 | breq1d 5089 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟))) |
18 | 17 | cbvrabv 3425 | . . . . 5 ⊢ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} |
19 | 14, 18 | eqtrdi 2796 | . . . 4 ⊢ (𝑠 = 𝑟 → {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)} = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
20 | 19 | cbvmptv 5192 | . . 3 ⊢ (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
21 | 20 | rneqi 5845 | . 2 ⊢ ran (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}) = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
22 | eqid 2740 | . 2 ⊢ ∪ (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}))) = ∪ (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)}))) | |
23 | eqid 2740 | . 2 ⊢ (((((𝐴𝐷∪ (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)})))) + 𝑆) / 2)↑2) − (𝑆↑2)) = (((((𝐴𝐷∪ (𝐽 fLim (𝑋filGenran (𝑠 ∈ ℝ+ ↦ {𝑧 ∈ 𝑌 ∣ ((𝐴𝐷𝑧)↑2) ≤ ((𝑆↑2) + 𝑠)})))) + 𝑆) / 2)↑2) − (𝑆↑2)) | |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 22, 23 | minveclem4 24594 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 {crab 3070 ∪ cuni 4845 class class class wbr 5079 ↦ cmpt 5162 × cxp 5588 ran crn 5591 ↾ cres 5592 ‘cfv 6432 (class class class)co 7271 infcinf 9178 ℝcr 10871 + caddc 10875 < clt 11010 ≤ cle 11011 − cmin 11205 / cdiv 11632 2c2 12028 ℝ+crp 12729 ↑cexp 13780 Basecbs 16910 ↾s cress 16939 distcds 16969 TopOpenctopn 17130 -gcsg 18577 LSubSpclss 20191 filGencfg 20584 fLim cflim 23083 normcnm 23730 ℂPreHilccph 24328 CMetSpccms 24494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fi 9148 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ico 13084 df-icc 13085 df-fz 13239 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-rest 17131 df-0g 17150 df-topgen 17152 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-grp 18578 df-minusg 18579 df-sbg 18580 df-mulg 18699 df-subg 18750 df-ghm 18830 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-cring 19784 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-dvr 19923 df-rnghom 19957 df-drng 19991 df-subrg 20020 df-staf 20103 df-srng 20104 df-lmod 20123 df-lss 20192 df-lmhm 20282 df-lvec 20363 df-sra 20432 df-rgmod 20433 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-fbas 20592 df-fg 20593 df-cnfld 20596 df-phl 20829 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cld 22168 df-ntr 22169 df-cls 22170 df-nei 22247 df-haus 22464 df-fil 22995 df-flim 23088 df-xms 23471 df-ms 23472 df-nm 23736 df-ngp 23737 df-nlm 23740 df-clm 24224 df-cph 24330 df-cfil 24417 df-cmet 24419 df-cms 24497 |
This theorem is referenced by: minveclem7 24597 |
Copyright terms: Public domain | W3C validator |