| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrncms | Structured version Visualization version GIF version | ||
| Description: Euclidean space is complete. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
| Ref | Expression |
|---|---|
| rrncms.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| rrncms | ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrncms.1 | . . . . 5 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
| 2 | eqid 2735 | . . . . 5 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 3 | eqid 2735 | . . . . 5 ⊢ (MetOpen‘(ℝn‘𝐼)) = (MetOpen‘(ℝn‘𝐼)) | |
| 4 | simpll 766 | . . . . 5 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (Cau‘(ℝn‘𝐼))) ∧ 𝑓:ℕ⟶𝑋) → 𝐼 ∈ Fin) | |
| 5 | simplr 768 | . . . . 5 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (Cau‘(ℝn‘𝐼))) ∧ 𝑓:ℕ⟶𝑋) → 𝑓 ∈ (Cau‘(ℝn‘𝐼))) | |
| 6 | simpr 484 | . . . . 5 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (Cau‘(ℝn‘𝐼))) ∧ 𝑓:ℕ⟶𝑋) → 𝑓:ℕ⟶𝑋) | |
| 7 | eqid 2735 | . . . . 5 ⊢ (𝑚 ∈ 𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝑓‘𝑡)‘𝑚)))) = (𝑚 ∈ 𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝑓‘𝑡)‘𝑚)))) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | rrncmslem 37802 | . . . 4 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (Cau‘(ℝn‘𝐼))) ∧ 𝑓:ℕ⟶𝑋) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘(ℝn‘𝐼)))) |
| 9 | 8 | ex 412 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (Cau‘(ℝn‘𝐼))) → (𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘(ℝn‘𝐼))))) |
| 10 | 9 | ralrimiva 3132 | . 2 ⊢ (𝐼 ∈ Fin → ∀𝑓 ∈ (Cau‘(ℝn‘𝐼))(𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘(ℝn‘𝐼))))) |
| 11 | nnuz 12893 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 12 | 1zzd 12621 | . . 3 ⊢ (𝐼 ∈ Fin → 1 ∈ ℤ) | |
| 13 | 1 | rrnmet 37799 | . . 3 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (Met‘𝑋)) |
| 14 | 11, 3, 12, 13 | iscmet3 25243 | . 2 ⊢ (𝐼 ∈ Fin → ((ℝn‘𝐼) ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘(ℝn‘𝐼))(𝑓:ℕ⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘(ℝn‘𝐼)))))) |
| 15 | 10, 14 | mpbird 257 | 1 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ↦ cmpt 5201 × cxp 5652 dom cdm 5654 ↾ cres 5656 ∘ ccom 5658 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ↑m cmap 8838 Fincfn 8957 ℝcr 11126 1c1 11128 − cmin 11464 ℕcn 12238 abscabs 15251 ⇝ cli 15498 MetOpencmopn 21303 ⇝𝑡clm 23162 Cauccau 25203 CMetccmet 25204 ℝncrrn 37795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cc 10447 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-omul 8483 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-acn 9954 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ico 13366 df-fz 13523 df-fzo 13670 df-fl 13807 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-limsup 15485 df-clim 15502 df-rlim 15503 df-sum 15701 df-rest 17434 df-topgen 17455 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-top 22830 df-topon 22847 df-bases 22882 df-ntr 22956 df-nei 23034 df-lm 23165 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-cfil 25205 df-cau 25206 df-cmet 25207 df-rrn 37796 |
| This theorem is referenced by: rrnheibor 37807 |
| Copyright terms: Public domain | W3C validator |