Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrncms Structured version   Visualization version   GIF version

Theorem rrncms 37872
Description: Euclidean space is complete. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypothesis
Ref Expression
rrncms.1 𝑋 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrncms (𝐼 ∈ Fin → (ℝn𝐼) ∈ (CMet‘𝑋))

Proof of Theorem rrncms
Dummy variables 𝑓 𝑚 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrncms.1 . . . . 5 𝑋 = (ℝ ↑m 𝐼)
2 eqid 2731 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3 eqid 2731 . . . . 5 (MetOpen‘(ℝn𝐼)) = (MetOpen‘(ℝn𝐼))
4 simpll 766 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (Cau‘(ℝn𝐼))) ∧ 𝑓:ℕ⟶𝑋) → 𝐼 ∈ Fin)
5 simplr 768 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (Cau‘(ℝn𝐼))) ∧ 𝑓:ℕ⟶𝑋) → 𝑓 ∈ (Cau‘(ℝn𝐼)))
6 simpr 484 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (Cau‘(ℝn𝐼))) ∧ 𝑓:ℕ⟶𝑋) → 𝑓:ℕ⟶𝑋)
7 eqid 2731 . . . . 5 (𝑚𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝑓𝑡)‘𝑚)))) = (𝑚𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝑓𝑡)‘𝑚))))
81, 2, 3, 4, 5, 6, 7rrncmslem 37871 . . . 4 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (Cau‘(ℝn𝐼))) ∧ 𝑓:ℕ⟶𝑋) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘(ℝn𝐼))))
98ex 412 . . 3 ((𝐼 ∈ Fin ∧ 𝑓 ∈ (Cau‘(ℝn𝐼))) → (𝑓:ℕ⟶𝑋𝑓 ∈ dom (⇝𝑡‘(MetOpen‘(ℝn𝐼)))))
109ralrimiva 3124 . 2 (𝐼 ∈ Fin → ∀𝑓 ∈ (Cau‘(ℝn𝐼))(𝑓:ℕ⟶𝑋𝑓 ∈ dom (⇝𝑡‘(MetOpen‘(ℝn𝐼)))))
11 nnuz 12772 . . 3 ℕ = (ℤ‘1)
12 1zzd 12500 . . 3 (𝐼 ∈ Fin → 1 ∈ ℤ)
131rrnmet 37868 . . 3 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
1411, 3, 12, 13iscmet3 25218 . 2 (𝐼 ∈ Fin → ((ℝn𝐼) ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘(ℝn𝐼))(𝑓:ℕ⟶𝑋𝑓 ∈ dom (⇝𝑡‘(MetOpen‘(ℝn𝐼))))))
1510, 14mpbird 257 1 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cmpt 5172   × cxp 5614  dom cdm 5616  cres 5618  ccom 5620  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  cr 11002  1c1 11004  cmin 11341  cn 12122  abscabs 15138  cli 15388  MetOpencmopn 21279  𝑡clm 23139  Cauccau 25178  CMetccmet 25179  ncrrn 37864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10323  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-acn 9832  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ico 13248  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-rest 17323  df-topgen 17344  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-top 22807  df-topon 22824  df-bases 22859  df-ntr 22933  df-nei 23011  df-lm 23142  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-cfil 25180  df-cau 25181  df-cmet 25182  df-rrn 37865
This theorem is referenced by:  rrnheibor  37876
  Copyright terms: Public domain W3C validator