Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > selvval2lem2 | Structured version Visualization version GIF version |
Description: 𝐷 is a ring homomorphism. (Contributed by SN, 15-Dec-2023.) |
Ref | Expression |
---|---|
selvval2lem2.u | ⊢ 𝑈 = (𝐼 mPoly 𝑅) |
selvval2lem2.t | ⊢ 𝑇 = (𝐽 mPoly 𝑈) |
selvval2lem2.c | ⊢ 𝐶 = (algSc‘𝑇) |
selvval2lem2.d | ⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) |
selvval2lem2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
selvval2lem2.j | ⊢ (𝜑 → 𝐽 ∈ 𝑊) |
selvval2lem2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Ref | Expression |
---|---|
selvval2lem2 | ⊢ (𝜑 → 𝐷 ∈ (𝑅 RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvval2lem2.d | . 2 ⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) | |
2 | selvval2lem2.u | . . . . . . 7 ⊢ 𝑈 = (𝐼 mPoly 𝑅) | |
3 | selvval2lem2.t | . . . . . . 7 ⊢ 𝑇 = (𝐽 mPoly 𝑈) | |
4 | selvval2lem2.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | selvval2lem2.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ 𝑊) | |
6 | selvval2lem2.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
7 | 2, 3, 4, 5, 6 | selvval2lem1 39937 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ AssAlg) |
8 | selvval2lem2.c | . . . . . . 7 ⊢ 𝐶 = (algSc‘𝑇) | |
9 | eqid 2737 | . . . . . . 7 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
10 | 8, 9 | asclrhm 20850 | . . . . . 6 ⊢ (𝑇 ∈ AssAlg → 𝐶 ∈ ((Scalar‘𝑇) RingHom 𝑇)) |
11 | 7, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ((Scalar‘𝑇) RingHom 𝑇)) |
12 | 2 | mplassa 20983 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑈 ∈ AssAlg) |
13 | 4, 6, 12 | syl2anc 587 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ AssAlg) |
14 | 3, 5, 13 | mplsca 20973 | . . . . . 6 ⊢ (𝜑 → 𝑈 = (Scalar‘𝑇)) |
15 | 14 | oveq1d 7228 | . . . . 5 ⊢ (𝜑 → (𝑈 RingHom 𝑇) = ((Scalar‘𝑇) RingHom 𝑇)) |
16 | 11, 15 | eleqtrrd 2841 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝑈 RingHom 𝑇)) |
17 | eqid 2737 | . . . . . 6 ⊢ (algSc‘𝑈) = (algSc‘𝑈) | |
18 | eqid 2737 | . . . . . 6 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
19 | 17, 18 | asclrhm 20850 | . . . . 5 ⊢ (𝑈 ∈ AssAlg → (algSc‘𝑈) ∈ ((Scalar‘𝑈) RingHom 𝑈)) |
20 | 13, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (algSc‘𝑈) ∈ ((Scalar‘𝑈) RingHom 𝑈)) |
21 | rhmco 19757 | . . . 4 ⊢ ((𝐶 ∈ (𝑈 RingHom 𝑇) ∧ (algSc‘𝑈) ∈ ((Scalar‘𝑈) RingHom 𝑈)) → (𝐶 ∘ (algSc‘𝑈)) ∈ ((Scalar‘𝑈) RingHom 𝑇)) | |
22 | 16, 20, 21 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝐶 ∘ (algSc‘𝑈)) ∈ ((Scalar‘𝑈) RingHom 𝑇)) |
23 | 2, 4, 6 | mplsca 20973 | . . . 4 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) |
24 | 23 | oveq1d 7228 | . . 3 ⊢ (𝜑 → (𝑅 RingHom 𝑇) = ((Scalar‘𝑈) RingHom 𝑇)) |
25 | 22, 24 | eleqtrrd 2841 | . 2 ⊢ (𝜑 → (𝐶 ∘ (algSc‘𝑈)) ∈ (𝑅 RingHom 𝑇)) |
26 | 1, 25 | eqeltrid 2842 | 1 ⊢ (𝜑 → 𝐷 ∈ (𝑅 RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∘ ccom 5555 ‘cfv 6380 (class class class)co 7213 Scalarcsca 16805 CRingccrg 19563 RingHom crh 19732 AssAlgcasa 20812 algSccascl 20814 mPoly cmpl 20865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-ofr 7470 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-seq 13575 df-hash 13897 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-tset 16821 df-0g 16946 df-gsum 16947 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-mulg 18489 df-subg 18540 df-ghm 18620 df-cntz 18711 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-cring 19565 df-rnghom 19735 df-subrg 19798 df-lmod 19901 df-lss 19969 df-assa 20815 df-ascl 20817 df-psr 20868 df-mpl 20870 |
This theorem is referenced by: selvval2lem3 39939 selvval2lem4 39941 |
Copyright terms: Public domain | W3C validator |