![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reefcld | Structured version Visualization version GIF version |
Description: The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
reefcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
reefcld | ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reefcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | reefcl 16058 | . 2 ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ‘cfv 6543 ℝcr 11132 expce 16032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-pm 8842 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-sup 9460 df-inf 9461 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-ico 13357 df-fz 13512 df-fzo 13655 df-fl 13784 df-seq 13994 df-exp 14054 df-fac 14260 df-hash 14317 df-shft 15041 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-limsup 15442 df-clim 15459 df-rlim 15460 df-sum 15660 df-ef 16038 |
This theorem is referenced by: efgt0 16074 efgt1 16087 eflt 16088 resinhcl 16127 tanhlt1 16131 absef 16168 efieq1re 16170 reeff1olem 26377 divlogrlim 26563 logf1o2 26578 recxpcl 26603 cxpsqrtlem 26630 abscxpbnd 26682 asinsinlem 26817 birthdaylem3 26879 o1cxp 26901 cxp2limlem 26902 logdifbnd 26920 harmonicbnd4 26937 pntpbnd1 27513 pntpbnd2 27514 pntibndlem2 27518 pntibndlem3 27519 pntlemb 27524 xrge0iifcnv 33529 logdivsqrle 34277 |
Copyright terms: Public domain | W3C validator |