Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2q Structured version   Visualization version   GIF version

Theorem lclkrlem2q 41506
Description: Lemma for lclkr 41516. The sum has a closed kernel when 𝐵 is nonzero. (Contributed by NM, 18-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2n.n 𝑁 = (LSpan‘𝑈)
lclkrlem2n.l 𝐿 = (LKer‘𝑈)
lclkrlem2o.h 𝐻 = (LHyp‘𝐾)
lclkrlem2o.o = ((ocH‘𝐾)‘𝑊)
lclkrlem2o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lclkrlem2o.a = (LSSum‘𝑈)
lclkrlem2o.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lclkrlem2q.le (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))
lclkrlem2q.lg (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
lclkrlem2q.b 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
lclkrlem2q.n (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
lclkrlem2q.bn (𝜑𝐵 ≠ (0g𝑈))
Assertion
Ref Expression
lclkrlem2q (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))

Proof of Theorem lclkrlem2q
StepHypRef Expression
1 lclkrlem2o.h . 2 𝐻 = (LHyp‘𝐾)
2 lclkrlem2o.o . 2 = ((ocH‘𝐾)‘𝑊)
3 lclkrlem2o.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lclkrlem2m.v . 2 𝑉 = (Base‘𝑈)
5 lclkrlem2m.s . 2 𝑆 = (Scalar‘𝑈)
6 lclkrlem2m.z . 2 0 = (0g𝑆)
7 eqid 2735 . 2 (0g𝑈) = (0g𝑈)
8 lclkrlem2o.a . 2 = (LSSum‘𝑈)
9 lclkrlem2n.n . 2 𝑁 = (LSpan‘𝑈)
10 lclkrlem2m.f . 2 𝐹 = (LFnl‘𝑈)
11 eqid 2735 . 2 (LSHyp‘𝑈) = (LSHyp‘𝑈)
12 lclkrlem2n.l . 2 𝐿 = (LKer‘𝑈)
13 lclkrlem2m.d . 2 𝐷 = (LDual‘𝑈)
14 lclkrlem2m.p . 2 + = (+g𝐷)
15 lclkrlem2o.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 lclkrlem2m.t . . . . 5 · = ( ·𝑠𝑈)
17 lclkrlem2m.q . . . . 5 × = (.r𝑆)
18 lclkrlem2m.i . . . . 5 𝐼 = (invr𝑆)
19 lclkrlem2m.m . . . . 5 = (-g𝑈)
20 lclkrlem2m.x . . . . 5 (𝜑𝑋𝑉)
21 lclkrlem2m.y . . . . 5 (𝜑𝑌𝑉)
22 lclkrlem2m.e . . . . 5 (𝜑𝐸𝐹)
23 lclkrlem2m.g . . . . 5 (𝜑𝐺𝐹)
241, 3, 15dvhlvec 41092 . . . . 5 (𝜑𝑈 ∈ LVec)
25 lclkrlem2q.b . . . . 5 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
26 lclkrlem2q.n . . . . 5 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
274, 16, 5, 17, 6, 18, 19, 10, 13, 14, 20, 21, 22, 23, 24, 25, 26lclkrlem2m 41502 . . . 4 (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))
2827simpld 494 . . 3 (𝜑𝐵𝑉)
29 lclkrlem2q.bn . . 3 (𝜑𝐵 ≠ (0g𝑈))
30 eldifsn 4791 . . 3 (𝐵 ∈ (𝑉 ∖ {(0g𝑈)}) ↔ (𝐵𝑉𝐵 ≠ (0g𝑈)))
3128, 29, 30sylanbrc 583 . 2 (𝜑𝐵 ∈ (𝑉 ∖ {(0g𝑈)}))
32 lclkrlem2q.le . 2 (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))
33 lclkrlem2q.lg . 2 (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
3427simprd 495 . 2 (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 0 )
354, 16, 5, 17, 6, 18, 19, 10, 13, 14, 20, 21, 22, 23, 9, 12, 1, 2, 3, 8, 15, 25, 26, 29lclkrlem2o 41504 . 2 (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31, 22, 23, 32, 33, 34, 35, 20, 21lclkrlem2l 41501 1 (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cdif 3960  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  -gcsg 18966  LSSumclsm 19667  invrcinvr 20404  LSpanclspn 20987  LSHypclsh 38957  LFnlclfn 39039  LKerclk 39067  LDualcld 39105  HLchlt 39332  LHypclh 39967  DVecHcdvh 41061  ocHcoch 41330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-oppg 19377  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-lshyp 38959  df-lcv 39001  df-lfl 39040  df-lkr 39068  df-ldual 39106  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tgrp 40726  df-tendo 40738  df-edring 40740  df-dveca 40986  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212  df-doch 41331  df-djh 41378
This theorem is referenced by:  lclkrlem2t  41509
  Copyright terms: Public domain W3C validator