![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2q | Structured version Visualization version GIF version |
Description: Lemma for lclkr 40393. The sum has a closed kernel when 𝐵 is nonzero. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2m.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lclkrlem2m.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2m.q | ⊢ × = (.r‘𝑆) |
lclkrlem2m.z | ⊢ 0 = (0g‘𝑆) |
lclkrlem2m.i | ⊢ 𝐼 = (invr‘𝑆) |
lclkrlem2m.m | ⊢ − = (-g‘𝑈) |
lclkrlem2m.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2m.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2m.p | ⊢ + = (+g‘𝐷) |
lclkrlem2m.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2m.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lclkrlem2m.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2m.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2n.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2n.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2o.a | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2o.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2q.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
lclkrlem2q.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
lclkrlem2q.b | ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) |
lclkrlem2q.n | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) |
lclkrlem2q.bn | ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑈)) |
Ref | Expression |
---|---|
lclkrlem2q | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2o.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lclkrlem2o.o | . 2 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lclkrlem2o.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lclkrlem2m.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lclkrlem2m.s | . 2 ⊢ 𝑆 = (Scalar‘𝑈) | |
6 | lclkrlem2m.z | . 2 ⊢ 0 = (0g‘𝑆) | |
7 | eqid 2733 | . 2 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
8 | lclkrlem2o.a | . 2 ⊢ ⊕ = (LSSum‘𝑈) | |
9 | lclkrlem2n.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
10 | lclkrlem2m.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
11 | eqid 2733 | . 2 ⊢ (LSHyp‘𝑈) = (LSHyp‘𝑈) | |
12 | lclkrlem2n.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
13 | lclkrlem2m.d | . 2 ⊢ 𝐷 = (LDual‘𝑈) | |
14 | lclkrlem2m.p | . 2 ⊢ + = (+g‘𝐷) | |
15 | lclkrlem2o.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
16 | lclkrlem2m.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
17 | lclkrlem2m.q | . . . . 5 ⊢ × = (.r‘𝑆) | |
18 | lclkrlem2m.i | . . . . 5 ⊢ 𝐼 = (invr‘𝑆) | |
19 | lclkrlem2m.m | . . . . 5 ⊢ − = (-g‘𝑈) | |
20 | lclkrlem2m.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
21 | lclkrlem2m.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
22 | lclkrlem2m.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
23 | lclkrlem2m.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
24 | 1, 3, 15 | dvhlvec 39969 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) |
25 | lclkrlem2q.b | . . . . 5 ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) | |
26 | lclkrlem2q.n | . . . . 5 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) | |
27 | 4, 16, 5, 17, 6, 18, 19, 10, 13, 14, 20, 21, 22, 23, 24, 25, 26 | lclkrlem2m 40379 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ 𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 )) |
28 | 27 | simpld 496 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
29 | lclkrlem2q.bn | . . 3 ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑈)) | |
30 | eldifsn 4790 | . . 3 ⊢ (𝐵 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝐵 ∈ 𝑉 ∧ 𝐵 ≠ (0g‘𝑈))) | |
31 | 28, 29, 30 | sylanbrc 584 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
32 | lclkrlem2q.le | . 2 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
33 | lclkrlem2q.lg | . 2 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
34 | 27 | simprd 497 | . 2 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 0 ) |
35 | 4, 16, 5, 17, 6, 18, 19, 10, 13, 14, 20, 21, 22, 23, 9, 12, 1, 2, 3, 8, 15, 25, 26, 29 | lclkrlem2o 40381 | . 2 ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31, 22, 23, 32, 33, 34, 35, 20, 21 | lclkrlem2l 40378 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∖ cdif 3945 {csn 4628 ‘cfv 6541 (class class class)co 7406 Basecbs 17141 +gcplusg 17194 .rcmulr 17195 Scalarcsca 17197 ·𝑠 cvsca 17198 0gc0g 17382 -gcsg 18818 LSSumclsm 19497 invrcinvr 20194 LSpanclspn 20575 LSHypclsh 37834 LFnlclfn 37916 LKerclk 37944 LDualcld 37982 HLchlt 38209 LHypclh 38844 DVecHcdvh 39938 ocHcoch 40207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-riotaBAD 37812 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-of 7667 df-om 7853 df-1st 7972 df-2nd 7973 df-tpos 8208 df-undef 8255 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17142 df-ress 17171 df-plusg 17207 df-mulr 17208 df-sca 17210 df-vsca 17211 df-0g 17384 df-mre 17527 df-mrc 17528 df-acs 17530 df-proset 18245 df-poset 18263 df-plt 18280 df-lub 18296 df-glb 18297 df-join 18298 df-meet 18299 df-p0 18375 df-p1 18376 df-lat 18382 df-clat 18449 df-mgm 18558 df-sgrp 18607 df-mnd 18623 df-submnd 18669 df-grp 18819 df-minusg 18820 df-sbg 18821 df-subg 18998 df-cntz 19176 df-oppg 19205 df-lsm 19499 df-cmn 19645 df-abl 19646 df-mgp 19983 df-ur 20000 df-ring 20052 df-oppr 20143 df-dvdsr 20164 df-unit 20165 df-invr 20195 df-dvr 20208 df-drng 20310 df-lmod 20466 df-lss 20536 df-lsp 20576 df-lvec 20707 df-lsatoms 37835 df-lshyp 37836 df-lcv 37878 df-lfl 37917 df-lkr 37945 df-ldual 37983 df-oposet 38035 df-ol 38037 df-oml 38038 df-covers 38125 df-ats 38126 df-atl 38157 df-cvlat 38181 df-hlat 38210 df-llines 38358 df-lplanes 38359 df-lvols 38360 df-lines 38361 df-psubsp 38363 df-pmap 38364 df-padd 38656 df-lhyp 38848 df-laut 38849 df-ldil 38964 df-ltrn 38965 df-trl 39019 df-tgrp 39603 df-tendo 39615 df-edring 39617 df-dveca 39863 df-disoa 39889 df-dvech 39939 df-dib 39999 df-dic 40033 df-dih 40089 df-doch 40208 df-djh 40255 |
This theorem is referenced by: lclkrlem2t 40386 |
Copyright terms: Public domain | W3C validator |