Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsidom Structured version   Visualization version   GIF version

Theorem qsidom 31163
Description: An ideal 𝐼 in the commutative ring 𝑅 is prime if and only if the factor ring 𝑄 is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024.)
Hypothesis
Ref Expression
qsidom.1 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
Assertion
Ref Expression
qsidom ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑄 ∈ IDomn ↔ 𝐼 ∈ (PrmIdeal‘𝑅)))

Proof of Theorem qsidom
StepHypRef Expression
1 qsidom.1 . . 3 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
21qsidomlem1 31161 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ∈ (PrmIdeal‘𝑅))
31qsidomlem2 31162 . . 3 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ IDomn)
43adantlr 714 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝑄 ∈ IDomn)
52, 4impbida 800 1 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑄 ∈ IDomn ↔ 𝐼 ∈ (PrmIdeal‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cfv 6340  (class class class)co 7156   /s cqus 16849   ~QG cqg 18355  CRingccrg 19379  LIdealclidl 20023  IDomncidom 20135  PrmIdealcprmidl 31143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-oadd 8122  df-er 8305  df-ec 8307  df-qs 8311  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-xnn0 12020  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-hash 13754  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-sca 16652  df-vsca 16653  df-ip 16654  df-tset 16655  df-ple 16656  df-ds 16658  df-0g 16786  df-imas 16852  df-qus 16853  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-grp 18185  df-minusg 18186  df-sbg 18187  df-subg 18356  df-nsg 18357  df-eqg 18358  df-cmn 18988  df-abl 18989  df-mgp 19321  df-ur 19333  df-ring 19380  df-cring 19381  df-oppr 19457  df-subrg 19614  df-lmod 19717  df-lss 19785  df-lsp 19825  df-sra 20025  df-rgmod 20026  df-lidl 20027  df-rsp 20028  df-2idl 20086  df-nzr 20112  df-domn 20138  df-idom 20139  df-prmidl 31144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator