Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimcl Structured version   Visualization version   GIF version

Theorem dimcl 30607
Description: Closure of the vector space dimension. (Contributed by Thierry Arnoux, 18-May-2023.)
Assertion
Ref Expression
dimcl (𝑉 ∈ LVec → (dim‘𝑉) ∈ ℕ0*)

Proof of Theorem dimcl
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 eqid 2795 . . . 4 (LBasis‘𝑉) = (LBasis‘𝑉)
21lbsex 19627 . . 3 (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅)
3 n0 4230 . . 3 ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉))
42, 3sylib 219 . 2 (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉))
51dimval 30605 . . 3 ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏))
6 hashxnn0 13549 . . . 4 (𝑏 ∈ (LBasis‘𝑉) → (♯‘𝑏) ∈ ℕ0*)
76adantl 482 . . 3 ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (♯‘𝑏) ∈ ℕ0*)
85, 7eqeltrd 2883 . 2 ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) ∈ ℕ0*)
94, 8exlimddv 1913 1 (𝑉 ∈ LVec → (dim‘𝑉) ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1761  wcel 2081  wne 2984  c0 4211  cfv 6225  0*cxnn0 11815  chash 13540  LBasisclbs 19536  LVecclvec 19564  dimcldim 30603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-reg 8902  ax-inf2 8950  ax-ac2 9731  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-rpss 7307  df-om 7437  df-1st 7545  df-2nd 7546  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-oi 8820  df-r1 9039  df-rank 9040  df-dju 9176  df-card 9214  df-acn 9217  df-ac 9388  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-xnn0 11816  df-z 11830  df-dec 11948  df-uz 12094  df-fz 12743  df-hash 13541  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-tset 16413  df-ple 16414  df-ocomp 16415  df-0g 16544  df-mre 16686  df-mrc 16687  df-mri 16688  df-acs 16689  df-proset 17367  df-drs 17368  df-poset 17385  df-ipo 17591  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-subg 18030  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-drng 19194  df-lmod 19326  df-lss 19394  df-lsp 19434  df-lbs 19537  df-lvec 19565  df-dim 30604
This theorem is referenced by:  drngdimgt0  30620  extdgcl  30650
  Copyright terms: Public domain W3C validator