![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dimcl | Structured version Visualization version GIF version |
Description: Closure of the vector space dimension. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
dimcl | ⊢ (𝑉 ∈ LVec → (dim‘𝑉) ∈ ℕ0*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2795 | . . . 4 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
2 | 1 | lbsex 19627 | . . 3 ⊢ (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅) |
3 | n0 4230 | . . 3 ⊢ ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) | |
4 | 2, 3 | sylib 219 | . 2 ⊢ (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
5 | 1 | dimval 30605 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏)) |
6 | hashxnn0 13549 | . . . 4 ⊢ (𝑏 ∈ (LBasis‘𝑉) → (♯‘𝑏) ∈ ℕ0*) | |
7 | 6 | adantl 482 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (♯‘𝑏) ∈ ℕ0*) |
8 | 5, 7 | eqeltrd 2883 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) ∈ ℕ0*) |
9 | 4, 8 | exlimddv 1913 | 1 ⊢ (𝑉 ∈ LVec → (dim‘𝑉) ∈ ℕ0*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1761 ∈ wcel 2081 ≠ wne 2984 ∅c0 4211 ‘cfv 6225 ℕ0*cxnn0 11815 ♯chash 13540 LBasisclbs 19536 LVecclvec 19564 dimcldim 30603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-reg 8902 ax-inf2 8950 ax-ac2 9731 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-rpss 7307 df-om 7437 df-1st 7545 df-2nd 7546 df-tpos 7743 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-oi 8820 df-r1 9039 df-rank 9040 df-dju 9176 df-card 9214 df-acn 9217 df-ac 9388 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-xnn0 11816 df-z 11830 df-dec 11948 df-uz 12094 df-fz 12743 df-hash 13541 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-tset 16413 df-ple 16414 df-ocomp 16415 df-0g 16544 df-mre 16686 df-mrc 16687 df-mri 16688 df-acs 16689 df-proset 17367 df-drs 17368 df-poset 17385 df-ipo 17591 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-submnd 17775 df-grp 17864 df-minusg 17865 df-sbg 17866 df-subg 18030 df-cmn 18635 df-abl 18636 df-mgp 18930 df-ur 18942 df-ring 18989 df-oppr 19063 df-dvdsr 19081 df-unit 19082 df-invr 19112 df-drng 19194 df-lmod 19326 df-lss 19394 df-lsp 19434 df-lbs 19537 df-lvec 19565 df-dim 30604 |
This theorem is referenced by: drngdimgt0 30620 extdgcl 30650 |
Copyright terms: Public domain | W3C validator |