ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1sgmprm GIF version

Theorem 1sgmprm 15316
Description: The sum of divisors for a prime is 𝑃 + 1 because the only divisors are 1 and 𝑃. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
1sgmprm (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1))

Proof of Theorem 1sgmprm
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ax-1cn 7991 . . 3 1 ∈ ℂ
2 1nn0 9284 . . 3 1 ∈ ℕ0
3 sgmppw 15314 . . 3 ((1 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0) → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃𝑐1)↑𝑘))
41, 2, 3mp3an13 1339 . 2 (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃𝑐1)↑𝑘))
5 prmnn 12305 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
65nncnd 9023 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
76exp1d 10779 . . 3 (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃)
87oveq2d 5941 . 2 (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = (1 σ 𝑃))
95adantr 276 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → 𝑃 ∈ ℕ)
109nnrpd 9788 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → 𝑃 ∈ ℝ+)
1110rpcxp1d 15247 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃𝑐1) = 𝑃)
1211oveq1d 5940 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → ((𝑃𝑐1)↑𝑘) = (𝑃𝑘))
1312sumeq2dv 11552 . . 3 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃𝑐1)↑𝑘) = Σ𝑘 ∈ (0...1)(𝑃𝑘))
14 1m1e0 9078 . . . . . . . 8 (1 − 1) = 0
1514oveq2i 5936 . . . . . . 7 (0...(1 − 1)) = (0...0)
1615sumeq1i 11547 . . . . . 6 Σ𝑘 ∈ (0...(1 − 1))(𝑃𝑘) = Σ𝑘 ∈ (0...0)(𝑃𝑘)
17 0z 9356 . . . . . . . 8 0 ∈ ℤ
186exp0d 10778 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃↑0) = 1)
1918, 1eqeltrdi 2287 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃↑0) ∈ ℂ)
20 oveq2 5933 . . . . . . . . 9 (𝑘 = 0 → (𝑃𝑘) = (𝑃↑0))
2120fsum1 11596 . . . . . . . 8 ((0 ∈ ℤ ∧ (𝑃↑0) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝑃𝑘) = (𝑃↑0))
2217, 19, 21sylancr 414 . . . . . . 7 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃𝑘) = (𝑃↑0))
2322, 18eqtrd 2229 . . . . . 6 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃𝑘) = 1)
2416, 23eqtrid 2241 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...(1 − 1))(𝑃𝑘) = 1)
2524, 7oveq12d 5943 . . . 4 (𝑃 ∈ ℙ → (Σ𝑘 ∈ (0...(1 − 1))(𝑃𝑘) + (𝑃↑1)) = (1 + 𝑃))
262a1i 9 . . . . . 6 (𝑃 ∈ ℙ → 1 ∈ ℕ0)
27 nn0uz 9655 . . . . . 6 0 = (ℤ‘0)
2826, 27eleqtrdi 2289 . . . . 5 (𝑃 ∈ ℙ → 1 ∈ (ℤ‘0))
29 elfznn0 10208 . . . . . 6 (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0)
30 expcl 10668 . . . . . 6 ((𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℂ)
316, 29, 30syl2an 289 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃𝑘) ∈ ℂ)
32 oveq2 5933 . . . . 5 (𝑘 = 1 → (𝑃𝑘) = (𝑃↑1))
3328, 31, 32fsumm1 11600 . . . 4 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃𝑘) = (Σ𝑘 ∈ (0...(1 − 1))(𝑃𝑘) + (𝑃↑1)))
34 addcom 8182 . . . . 5 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + 1) = (1 + 𝑃))
356, 1, 34sylancl 413 . . . 4 (𝑃 ∈ ℙ → (𝑃 + 1) = (1 + 𝑃))
3625, 33, 353eqtr4d 2239 . . 3 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃𝑘) = (𝑃 + 1))
3713, 36eqtrd 2229 . 2 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃𝑐1)↑𝑘) = (𝑃 + 1))
384, 8, 373eqtr3d 2237 1 (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  cc 7896  0cc0 7898  1c1 7899   + caddc 7901  cmin 8216  cn 9009  0cn0 9268  cz 9345  cuz 9620  ...cfz 10102  cexp 10649  Σcsu 11537  cprime 12302  𝑐ccxp 15179   σ csgm 15303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-pre-suploc 8019  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-xnn0 9332  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-ioo 9986  df-ico 9988  df-icc 9989  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-bc 10859  df-ihash 10887  df-shft 10999  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-ef 11832  df-e 11833  df-dvds 11972  df-gcd 12148  df-prm 12303  df-pc 12481  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14320  df-topon 14333  df-bases 14365  df-ntr 14418  df-cn 14510  df-cnp 14511  df-tx 14575  df-cncf 14893  df-limced 14978  df-dvap 14979  df-relog 15180  df-rpcxp 15181  df-sgm 15304
This theorem is referenced by:  perfect1  15320
  Copyright terms: Public domain W3C validator