![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1sgmprm | GIF version |
Description: The sum of divisors for a prime is 𝑃 + 1 because the only divisors are 1 and 𝑃. (Contributed by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
1sgmprm | ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7970 | . . 3 ⊢ 1 ∈ ℂ | |
2 | 1nn0 9262 | . . 3 ⊢ 1 ∈ ℕ0 | |
3 | sgmppw 15200 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0) → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘)) | |
4 | 1, 2, 3 | mp3an13 1339 | . 2 ⊢ (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘)) |
5 | prmnn 12254 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
6 | 5 | nncnd 9001 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
7 | 6 | exp1d 10745 | . . 3 ⊢ (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃) |
8 | 7 | oveq2d 5938 | . 2 ⊢ (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = (1 σ 𝑃)) |
9 | 5 | adantr 276 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → 𝑃 ∈ ℕ) |
10 | 9 | nnrpd 9766 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → 𝑃 ∈ ℝ+) |
11 | 10 | rpcxp1d 15134 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃↑𝑐1) = 𝑃) |
12 | 11 | oveq1d 5937 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → ((𝑃↑𝑐1)↑𝑘) = (𝑃↑𝑘)) |
13 | 12 | sumeq2dv 11517 | . . 3 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘) = Σ𝑘 ∈ (0...1)(𝑃↑𝑘)) |
14 | 1m1e0 9056 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
15 | 14 | oveq2i 5933 | . . . . . . 7 ⊢ (0...(1 − 1)) = (0...0) |
16 | 15 | sumeq1i 11512 | . . . . . 6 ⊢ Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) = Σ𝑘 ∈ (0...0)(𝑃↑𝑘) |
17 | 0z 9334 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
18 | 6 | exp0d 10744 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) = 1) |
19 | 18, 1 | eqeltrdi 2287 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) ∈ ℂ) |
20 | oveq2 5930 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑃↑𝑘) = (𝑃↑0)) | |
21 | 20 | fsum1 11561 | . . . . . . . 8 ⊢ ((0 ∈ ℤ ∧ (𝑃↑0) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = (𝑃↑0)) |
22 | 17, 19, 21 | sylancr 414 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = (𝑃↑0)) |
23 | 22, 18 | eqtrd 2229 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = 1) |
24 | 16, 23 | eqtrid 2241 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) = 1) |
25 | 24, 7 | oveq12d 5940 | . . . 4 ⊢ (𝑃 ∈ ℙ → (Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) + (𝑃↑1)) = (1 + 𝑃)) |
26 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 1 ∈ ℕ0) |
27 | nn0uz 9633 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
28 | 26, 27 | eleqtrdi 2289 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∈ (ℤ≥‘0)) |
29 | elfznn0 10186 | . . . . . 6 ⊢ (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0) | |
30 | expcl 10634 | . . . . . 6 ⊢ ((𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑃↑𝑘) ∈ ℂ) | |
31 | 6, 29, 30 | syl2an 289 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃↑𝑘) ∈ ℂ) |
32 | oveq2 5930 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃↑𝑘) = (𝑃↑1)) | |
33 | 28, 31, 32 | fsumm1 11565 | . . . 4 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃↑𝑘) = (Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) + (𝑃↑1))) |
34 | addcom 8161 | . . . . 5 ⊢ ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + 1) = (1 + 𝑃)) | |
35 | 6, 1, 34 | sylancl 413 | . . . 4 ⊢ (𝑃 ∈ ℙ → (𝑃 + 1) = (1 + 𝑃)) |
36 | 25, 33, 35 | 3eqtr4d 2239 | . . 3 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃↑𝑘) = (𝑃 + 1)) |
37 | 13, 36 | eqtrd 2229 | . 2 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘) = (𝑃 + 1)) |
38 | 4, 8, 37 | 3eqtr3d 2237 | 1 ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 ℂcc 7875 0cc0 7877 1c1 7878 + caddc 7880 − cmin 8195 ℕcn 8987 ℕ0cn0 9246 ℤcz 9323 ℤ≥cuz 9598 ...cfz 10080 ↑cexp 10615 Σcsu 11502 ℙcprime 12251 ↑𝑐ccxp 15066 σ csgm 15189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 ax-arch 7996 ax-caucvg 7997 ax-pre-suploc 7998 ax-addf 7999 ax-mulf 8000 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-2o 6475 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7048 df-inf 7049 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-n0 9247 df-xnn0 9310 df-z 9324 df-uz 9599 df-q 9691 df-rp 9726 df-xneg 9844 df-xadd 9845 df-ioo 9964 df-ico 9966 df-icc 9967 df-fz 10081 df-fzo 10215 df-fl 10345 df-mod 10400 df-seqfrec 10525 df-exp 10616 df-fac 10803 df-bc 10825 df-ihash 10853 df-shft 10965 df-cj 10992 df-re 10993 df-im 10994 df-rsqrt 11148 df-abs 11149 df-clim 11428 df-sumdc 11503 df-ef 11797 df-e 11798 df-dvds 11937 df-gcd 12086 df-prm 12252 df-pc 12430 df-rest 12888 df-topgen 12907 df-psmet 14075 df-xmet 14076 df-met 14077 df-bl 14078 df-mopn 14079 df-top 14210 df-topon 14223 df-bases 14255 df-ntr 14308 df-cn 14400 df-cnp 14401 df-tx 14465 df-cncf 14783 df-limced 14868 df-dvap 14869 df-relog 15067 df-rpcxp 15068 df-sgm 15190 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |