ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1sgmprm GIF version

Theorem 1sgmprm 15653
Description: The sum of divisors for a prime is 𝑃 + 1 because the only divisors are 1 and 𝑃. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
1sgmprm (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1))

Proof of Theorem 1sgmprm
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ax-1cn 8080 . . 3 1 ∈ ℂ
2 1nn0 9373 . . 3 1 ∈ ℕ0
3 sgmppw 15651 . . 3 ((1 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0) → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃𝑐1)↑𝑘))
41, 2, 3mp3an13 1362 . 2 (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃𝑐1)↑𝑘))
5 prmnn 12618 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
65nncnd 9112 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
76exp1d 10877 . . 3 (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃)
87oveq2d 6010 . 2 (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = (1 σ 𝑃))
95adantr 276 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → 𝑃 ∈ ℕ)
109nnrpd 9878 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → 𝑃 ∈ ℝ+)
1110rpcxp1d 15584 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃𝑐1) = 𝑃)
1211oveq1d 6009 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → ((𝑃𝑐1)↑𝑘) = (𝑃𝑘))
1312sumeq2dv 11865 . . 3 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃𝑐1)↑𝑘) = Σ𝑘 ∈ (0...1)(𝑃𝑘))
14 1m1e0 9167 . . . . . . . 8 (1 − 1) = 0
1514oveq2i 6005 . . . . . . 7 (0...(1 − 1)) = (0...0)
1615sumeq1i 11860 . . . . . 6 Σ𝑘 ∈ (0...(1 − 1))(𝑃𝑘) = Σ𝑘 ∈ (0...0)(𝑃𝑘)
17 0z 9445 . . . . . . . 8 0 ∈ ℤ
186exp0d 10876 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃↑0) = 1)
1918, 1eqeltrdi 2320 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃↑0) ∈ ℂ)
20 oveq2 6002 . . . . . . . . 9 (𝑘 = 0 → (𝑃𝑘) = (𝑃↑0))
2120fsum1 11909 . . . . . . . 8 ((0 ∈ ℤ ∧ (𝑃↑0) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝑃𝑘) = (𝑃↑0))
2217, 19, 21sylancr 414 . . . . . . 7 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃𝑘) = (𝑃↑0))
2322, 18eqtrd 2262 . . . . . 6 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃𝑘) = 1)
2416, 23eqtrid 2274 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...(1 − 1))(𝑃𝑘) = 1)
2524, 7oveq12d 6012 . . . 4 (𝑃 ∈ ℙ → (Σ𝑘 ∈ (0...(1 − 1))(𝑃𝑘) + (𝑃↑1)) = (1 + 𝑃))
262a1i 9 . . . . . 6 (𝑃 ∈ ℙ → 1 ∈ ℕ0)
27 nn0uz 9745 . . . . . 6 0 = (ℤ‘0)
2826, 27eleqtrdi 2322 . . . . 5 (𝑃 ∈ ℙ → 1 ∈ (ℤ‘0))
29 elfznn0 10298 . . . . . 6 (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0)
30 expcl 10766 . . . . . 6 ((𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℂ)
316, 29, 30syl2an 289 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃𝑘) ∈ ℂ)
32 oveq2 6002 . . . . 5 (𝑘 = 1 → (𝑃𝑘) = (𝑃↑1))
3328, 31, 32fsumm1 11913 . . . 4 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃𝑘) = (Σ𝑘 ∈ (0...(1 − 1))(𝑃𝑘) + (𝑃↑1)))
34 addcom 8271 . . . . 5 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + 1) = (1 + 𝑃))
356, 1, 34sylancl 413 . . . 4 (𝑃 ∈ ℙ → (𝑃 + 1) = (1 + 𝑃))
3625, 33, 353eqtr4d 2272 . . 3 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃𝑘) = (𝑃 + 1))
3713, 36eqtrd 2262 . 2 (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃𝑐1)↑𝑘) = (𝑃 + 1))
384, 8, 373eqtr3d 2270 1 (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cfv 5314  (class class class)co 5994  cc 7985  0cc0 7987  1c1 7988   + caddc 7990  cmin 8305  cn 9098  0cn0 9357  cz 9434  cuz 9710  ...cfz 10192  cexp 10747  Σcsu 11850  cprime 12615  𝑐ccxp 15516   σ csgm 15640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107  ax-pre-suploc 8108  ax-addf 8109  ax-mulf 8110
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-of 6208  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-2o 6553  df-oadd 6556  df-er 6670  df-map 6787  df-pm 6788  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-xnn0 9421  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-xneg 9956  df-xadd 9957  df-ioo 10076  df-ico 10078  df-icc 10079  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-fac 10935  df-bc 10957  df-ihash 10985  df-shft 11312  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851  df-ef 12145  df-e 12146  df-dvds 12285  df-gcd 12461  df-prm 12616  df-pc 12794  df-rest 13260  df-topgen 13279  df-psmet 14492  df-xmet 14493  df-met 14494  df-bl 14495  df-mopn 14496  df-top 14657  df-topon 14670  df-bases 14702  df-ntr 14755  df-cn 14847  df-cnp 14848  df-tx 14912  df-cncf 15230  df-limced 15315  df-dvap 15316  df-relog 15517  df-rpcxp 15518  df-sgm 15641
This theorem is referenced by:  perfect1  15657
  Copyright terms: Public domain W3C validator