| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1sgmprm | GIF version | ||
| Description: The sum of divisors for a prime is 𝑃 + 1 because the only divisors are 1 and 𝑃. (Contributed by Mario Carneiro, 17-May-2016.) |
| Ref | Expression |
|---|---|
| 1sgmprm | ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7974 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | 1nn0 9267 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 3 | sgmppw 15238 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0) → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘)) | |
| 4 | 1, 2, 3 | mp3an13 1339 | . 2 ⊢ (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘)) |
| 5 | prmnn 12288 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 6 | 5 | nncnd 9006 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
| 7 | 6 | exp1d 10762 | . . 3 ⊢ (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃) |
| 8 | 7 | oveq2d 5939 | . 2 ⊢ (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = (1 σ 𝑃)) |
| 9 | 5 | adantr 276 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → 𝑃 ∈ ℕ) |
| 10 | 9 | nnrpd 9771 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → 𝑃 ∈ ℝ+) |
| 11 | 10 | rpcxp1d 15171 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃↑𝑐1) = 𝑃) |
| 12 | 11 | oveq1d 5938 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → ((𝑃↑𝑐1)↑𝑘) = (𝑃↑𝑘)) |
| 13 | 12 | sumeq2dv 11535 | . . 3 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘) = Σ𝑘 ∈ (0...1)(𝑃↑𝑘)) |
| 14 | 1m1e0 9061 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
| 15 | 14 | oveq2i 5934 | . . . . . . 7 ⊢ (0...(1 − 1)) = (0...0) |
| 16 | 15 | sumeq1i 11530 | . . . . . 6 ⊢ Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) = Σ𝑘 ∈ (0...0)(𝑃↑𝑘) |
| 17 | 0z 9339 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
| 18 | 6 | exp0d 10761 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) = 1) |
| 19 | 18, 1 | eqeltrdi 2287 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) ∈ ℂ) |
| 20 | oveq2 5931 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑃↑𝑘) = (𝑃↑0)) | |
| 21 | 20 | fsum1 11579 | . . . . . . . 8 ⊢ ((0 ∈ ℤ ∧ (𝑃↑0) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = (𝑃↑0)) |
| 22 | 17, 19, 21 | sylancr 414 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = (𝑃↑0)) |
| 23 | 22, 18 | eqtrd 2229 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = 1) |
| 24 | 16, 23 | eqtrid 2241 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) = 1) |
| 25 | 24, 7 | oveq12d 5941 | . . . 4 ⊢ (𝑃 ∈ ℙ → (Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) + (𝑃↑1)) = (1 + 𝑃)) |
| 26 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 1 ∈ ℕ0) |
| 27 | nn0uz 9638 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
| 28 | 26, 27 | eleqtrdi 2289 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∈ (ℤ≥‘0)) |
| 29 | elfznn0 10191 | . . . . . 6 ⊢ (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0) | |
| 30 | expcl 10651 | . . . . . 6 ⊢ ((𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑃↑𝑘) ∈ ℂ) | |
| 31 | 6, 29, 30 | syl2an 289 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃↑𝑘) ∈ ℂ) |
| 32 | oveq2 5931 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃↑𝑘) = (𝑃↑1)) | |
| 33 | 28, 31, 32 | fsumm1 11583 | . . . 4 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃↑𝑘) = (Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) + (𝑃↑1))) |
| 34 | addcom 8165 | . . . . 5 ⊢ ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + 1) = (1 + 𝑃)) | |
| 35 | 6, 1, 34 | sylancl 413 | . . . 4 ⊢ (𝑃 ∈ ℙ → (𝑃 + 1) = (1 + 𝑃)) |
| 36 | 25, 33, 35 | 3eqtr4d 2239 | . . 3 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃↑𝑘) = (𝑃 + 1)) |
| 37 | 13, 36 | eqtrd 2229 | . 2 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘) = (𝑃 + 1)) |
| 38 | 4, 8, 37 | 3eqtr3d 2237 | 1 ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5923 ℂcc 7879 0cc0 7881 1c1 7882 + caddc 7884 − cmin 8199 ℕcn 8992 ℕ0cn0 9251 ℤcz 9328 ℤ≥cuz 9603 ...cfz 10085 ↑cexp 10632 Σcsu 11520 ℙcprime 12285 ↑𝑐ccxp 15103 σ csgm 15227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 ax-arch 8000 ax-caucvg 8001 ax-pre-suploc 8002 ax-addf 8003 ax-mulf 8004 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-of 6136 df-1st 6199 df-2nd 6200 df-recs 6364 df-irdg 6429 df-frec 6450 df-1o 6475 df-2o 6476 df-oadd 6479 df-er 6593 df-map 6710 df-pm 6711 df-en 6801 df-dom 6802 df-fin 6803 df-sup 7051 df-inf 7052 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-n0 9252 df-xnn0 9315 df-z 9329 df-uz 9604 df-q 9696 df-rp 9731 df-xneg 9849 df-xadd 9850 df-ioo 9969 df-ico 9971 df-icc 9972 df-fz 10086 df-fzo 10220 df-fl 10362 df-mod 10417 df-seqfrec 10542 df-exp 10633 df-fac 10820 df-bc 10842 df-ihash 10870 df-shft 10982 df-cj 11009 df-re 11010 df-im 11011 df-rsqrt 11165 df-abs 11166 df-clim 11446 df-sumdc 11521 df-ef 11815 df-e 11816 df-dvds 11955 df-gcd 12131 df-prm 12286 df-pc 12464 df-rest 12922 df-topgen 12941 df-psmet 14109 df-xmet 14110 df-met 14111 df-bl 14112 df-mopn 14113 df-top 14244 df-topon 14257 df-bases 14289 df-ntr 14342 df-cn 14434 df-cnp 14435 df-tx 14499 df-cncf 14817 df-limced 14902 df-dvap 14903 df-relog 15104 df-rpcxp 15105 df-sgm 15228 |
| This theorem is referenced by: perfect1 15244 |
| Copyright terms: Public domain | W3C validator |