| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > divlimc | Structured version Visualization version GIF version | ||
| Description: Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| divlimc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| divlimc.g | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| divlimc.h | ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) |
| divlimc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| divlimc.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) |
| divlimc.x | ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) |
| divlimc.y | ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) |
| divlimc.yne0 | ⊢ (𝜑 → 𝑌 ≠ 0) |
| divlimc.cne0 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) |
| Ref | Expression |
|---|---|
| divlimc | ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divlimc.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) = (𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) | |
| 3 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) | |
| 4 | divlimc.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 5 | divlimc.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) | |
| 6 | 5 | eldifad 3914 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 7 | divlimc.cne0 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) | |
| 8 | 6, 7 | reccld 11887 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 / 𝐶) ∈ ℂ) |
| 9 | divlimc.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) | |
| 10 | divlimc.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 11 | divlimc.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) | |
| 12 | divlimc.yne0 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0) | |
| 13 | 10, 2, 5, 11, 12 | reclimc 45690 | . . 3 ⊢ (𝜑 → (1 / 𝑌) ∈ ((𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) limℂ 𝐷)) |
| 14 | 1, 2, 3, 4, 8, 9, 13 | mullimc 45655 | . 2 ⊢ (𝜑 → (𝑋 · (1 / 𝑌)) ∈ ((𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) limℂ 𝐷)) |
| 15 | limccl 25801 | . . . 4 ⊢ (𝐹 limℂ 𝐷) ⊆ ℂ | |
| 16 | 15, 9 | sselid 3932 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 17 | limccl 25801 | . . . 4 ⊢ (𝐺 limℂ 𝐷) ⊆ ℂ | |
| 18 | 17, 11 | sselid 3932 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 19 | 16, 18, 12 | divrecd 11897 | . 2 ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (1 / 𝑌))) |
| 20 | divlimc.h | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) | |
| 21 | 4, 6, 7 | divrecd 11897 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
| 22 | 21 | mpteq2dva 5184 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶)))) |
| 23 | 20, 22 | eqtrid 2778 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶)))) |
| 24 | 23 | oveq1d 7361 | . 2 ⊢ (𝜑 → (𝐻 limℂ 𝐷) = ((𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) limℂ 𝐷)) |
| 25 | 14, 19, 24 | 3eltr4d 2846 | 1 ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 {csn 4576 ↦ cmpt 5172 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 · cmul 11008 / cdiv 11771 limℂ climc 25788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-fz 13405 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-rest 17323 df-topn 17324 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cnp 23141 df-xms 24233 df-ms 24234 df-limc 25792 |
| This theorem is referenced by: fourierdlem74 46217 fourierdlem75 46218 fourierdlem76 46219 |
| Copyright terms: Public domain | W3C validator |