| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > divlimc | Structured version Visualization version GIF version | ||
| Description: Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| divlimc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| divlimc.g | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| divlimc.h | ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) |
| divlimc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| divlimc.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) |
| divlimc.x | ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) |
| divlimc.y | ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) |
| divlimc.yne0 | ⊢ (𝜑 → 𝑌 ≠ 0) |
| divlimc.cne0 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) |
| Ref | Expression |
|---|---|
| divlimc | ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divlimc.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) = (𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) | |
| 3 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) | |
| 4 | divlimc.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 5 | divlimc.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) | |
| 6 | 5 | eldifad 3929 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 7 | divlimc.cne0 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) | |
| 8 | 6, 7 | reccld 11958 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 / 𝐶) ∈ ℂ) |
| 9 | divlimc.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) | |
| 10 | divlimc.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 11 | divlimc.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) | |
| 12 | divlimc.yne0 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0) | |
| 13 | 10, 2, 5, 11, 12 | reclimc 45658 | . . 3 ⊢ (𝜑 → (1 / 𝑌) ∈ ((𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) limℂ 𝐷)) |
| 14 | 1, 2, 3, 4, 8, 9, 13 | mullimc 45621 | . 2 ⊢ (𝜑 → (𝑋 · (1 / 𝑌)) ∈ ((𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) limℂ 𝐷)) |
| 15 | limccl 25783 | . . . 4 ⊢ (𝐹 limℂ 𝐷) ⊆ ℂ | |
| 16 | 15, 9 | sselid 3947 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 17 | limccl 25783 | . . . 4 ⊢ (𝐺 limℂ 𝐷) ⊆ ℂ | |
| 18 | 17, 11 | sselid 3947 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 19 | 16, 18, 12 | divrecd 11968 | . 2 ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (1 / 𝑌))) |
| 20 | divlimc.h | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) | |
| 21 | 4, 6, 7 | divrecd 11968 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
| 22 | 21 | mpteq2dva 5203 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶)))) |
| 23 | 20, 22 | eqtrid 2777 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶)))) |
| 24 | 23 | oveq1d 7405 | . 2 ⊢ (𝜑 → (𝐻 limℂ 𝐷) = ((𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) limℂ 𝐷)) |
| 25 | 14, 19, 24 | 3eltr4d 2844 | 1 ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 {csn 4592 ↦ cmpt 5191 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 · cmul 11080 / cdiv 11842 limℂ climc 25770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-rest 17392 df-topn 17393 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cnp 23122 df-xms 24215 df-ms 24216 df-limc 25774 |
| This theorem is referenced by: fourierdlem74 46185 fourierdlem75 46186 fourierdlem76 46187 |
| Copyright terms: Public domain | W3C validator |