| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > divlimc | Structured version Visualization version GIF version | ||
| Description: Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| divlimc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| divlimc.g | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| divlimc.h | ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) |
| divlimc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| divlimc.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) |
| divlimc.x | ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) |
| divlimc.y | ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) |
| divlimc.yne0 | ⊢ (𝜑 → 𝑌 ≠ 0) |
| divlimc.cne0 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) |
| Ref | Expression |
|---|---|
| divlimc | ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divlimc.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) = (𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) | |
| 3 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) | |
| 4 | divlimc.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 5 | divlimc.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) | |
| 6 | 5 | eldifad 3910 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 7 | divlimc.cne0 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) | |
| 8 | 6, 7 | reccld 11897 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 / 𝐶) ∈ ℂ) |
| 9 | divlimc.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) | |
| 10 | divlimc.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 11 | divlimc.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) | |
| 12 | divlimc.yne0 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0) | |
| 13 | 10, 2, 5, 11, 12 | reclimc 45775 | . . 3 ⊢ (𝜑 → (1 / 𝑌) ∈ ((𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) limℂ 𝐷)) |
| 14 | 1, 2, 3, 4, 8, 9, 13 | mullimc 45740 | . 2 ⊢ (𝜑 → (𝑋 · (1 / 𝑌)) ∈ ((𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) limℂ 𝐷)) |
| 15 | limccl 25804 | . . . 4 ⊢ (𝐹 limℂ 𝐷) ⊆ ℂ | |
| 16 | 15, 9 | sselid 3928 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 17 | limccl 25804 | . . . 4 ⊢ (𝐺 limℂ 𝐷) ⊆ ℂ | |
| 18 | 17, 11 | sselid 3928 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 19 | 16, 18, 12 | divrecd 11907 | . 2 ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (1 / 𝑌))) |
| 20 | divlimc.h | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) | |
| 21 | 4, 6, 7 | divrecd 11907 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
| 22 | 21 | mpteq2dva 5186 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶)))) |
| 23 | 20, 22 | eqtrid 2780 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶)))) |
| 24 | 23 | oveq1d 7367 | . 2 ⊢ (𝜑 → (𝐻 limℂ 𝐷) = ((𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) limℂ 𝐷)) |
| 25 | 14, 19, 24 | 3eltr4d 2848 | 1 ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 {csn 4575 ↦ cmpt 5174 (class class class)co 7352 ℂcc 11011 0cc0 11013 1c1 11014 · cmul 11018 / cdiv 11781 limℂ climc 25791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mulr 17177 df-starv 17178 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-rest 17328 df-topn 17329 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cnp 23144 df-xms 24236 df-ms 24237 df-limc 25795 |
| This theorem is referenced by: fourierdlem74 46302 fourierdlem75 46303 fourierdlem76 46304 |
| Copyright terms: Public domain | W3C validator |