Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > divlimc | Structured version Visualization version GIF version |
Description: Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
divlimc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
divlimc.g | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
divlimc.h | ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) |
divlimc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
divlimc.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) |
divlimc.x | ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) |
divlimc.y | ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) |
divlimc.yne0 | ⊢ (𝜑 → 𝑌 ≠ 0) |
divlimc.cne0 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
divlimc | ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divlimc.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) = (𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) | |
3 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) | |
4 | divlimc.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
5 | divlimc.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) | |
6 | 5 | eldifad 3909 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
7 | divlimc.cne0 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) | |
8 | 6, 7 | reccld 11837 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 / 𝐶) ∈ ℂ) |
9 | divlimc.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) | |
10 | divlimc.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
11 | divlimc.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) | |
12 | divlimc.yne0 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0) | |
13 | 10, 2, 5, 11, 12 | reclimc 43519 | . . 3 ⊢ (𝜑 → (1 / 𝑌) ∈ ((𝑥 ∈ 𝐴 ↦ (1 / 𝐶)) limℂ 𝐷)) |
14 | 1, 2, 3, 4, 8, 9, 13 | mullimc 43482 | . 2 ⊢ (𝜑 → (𝑋 · (1 / 𝑌)) ∈ ((𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) limℂ 𝐷)) |
15 | limccl 25137 | . . . 4 ⊢ (𝐹 limℂ 𝐷) ⊆ ℂ | |
16 | 15, 9 | sselid 3929 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
17 | limccl 25137 | . . . 4 ⊢ (𝐺 limℂ 𝐷) ⊆ ℂ | |
18 | 17, 11 | sselid 3929 | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
19 | 16, 18, 12 | divrecd 11847 | . 2 ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (1 / 𝑌))) |
20 | divlimc.h | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) | |
21 | 4, 6, 7 | divrecd 11847 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
22 | 21 | mpteq2dva 5189 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶)))) |
23 | 20, 22 | eqtrid 2788 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶)))) |
24 | 23 | oveq1d 7344 | . 2 ⊢ (𝜑 → (𝐻 limℂ 𝐷) = ((𝑥 ∈ 𝐴 ↦ (𝐵 · (1 / 𝐶))) limℂ 𝐷)) |
25 | 14, 19, 24 | 3eltr4d 2852 | 1 ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∖ cdif 3894 {csn 4572 ↦ cmpt 5172 (class class class)co 7329 ℂcc 10962 0cc0 10964 1c1 10965 · cmul 10969 / cdiv 11725 limℂ climc 25124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-fi 9260 df-sup 9291 df-inf 9292 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-q 12782 df-rp 12824 df-xneg 12941 df-xadd 12942 df-xmul 12943 df-fz 13333 df-seq 13815 df-exp 13876 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-struct 16937 df-slot 16972 df-ndx 16984 df-base 17002 df-plusg 17064 df-mulr 17065 df-starv 17066 df-tset 17070 df-ple 17071 df-ds 17073 df-unif 17074 df-rest 17222 df-topn 17223 df-topgen 17243 df-psmet 20687 df-xmet 20688 df-met 20689 df-bl 20690 df-mopn 20691 df-cnfld 20696 df-top 22141 df-topon 22158 df-topsp 22180 df-bases 22194 df-cnp 22477 df-xms 23571 df-ms 23572 df-limc 25128 |
This theorem is referenced by: fourierdlem74 44046 fourierdlem75 44047 fourierdlem76 44048 |
Copyright terms: Public domain | W3C validator |