Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgmmul | Structured version Visualization version GIF version |
Description: The divisor function for fixed parameter 𝐴 is a multiplicative function. (Contributed by Mario Carneiro, 2-Jul-2015.) |
Ref | Expression |
---|---|
sgmmul | ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = ((𝐴 σ 𝑀) · (𝐴 σ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1191 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → 𝑀 ∈ ℕ) | |
2 | simpr2 1192 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → 𝑁 ∈ ℕ) | |
3 | simpr3 1193 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑀 gcd 𝑁) = 1) | |
4 | eqid 2758 | . . 3 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} | |
5 | eqid 2758 | . . 3 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} | |
6 | eqid 2758 | . . 3 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} | |
7 | ssrab2 3986 | . . . . . 6 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ⊆ ℕ | |
8 | simpr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) | |
9 | 7, 8 | sseldi 3892 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝑗 ∈ ℕ) |
10 | 9 | nncnd 11703 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝑗 ∈ ℂ) |
11 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝐴 ∈ ℂ) | |
12 | 10, 11 | cxpcld 25412 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → (𝑗↑𝑐𝐴) ∈ ℂ) |
13 | ssrab2 3986 | . . . . . 6 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ | |
14 | simpr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
15 | 13, 14 | sseldi 3892 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑘 ∈ ℕ) |
16 | 15 | nncnd 11703 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑘 ∈ ℂ) |
17 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝐴 ∈ ℂ) | |
18 | 16, 17 | cxpcld 25412 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑘↑𝑐𝐴) ∈ ℂ) |
19 | 9 | adantrr 716 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑗 ∈ ℕ) |
20 | 19 | nnred 11702 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑗 ∈ ℝ) |
21 | 19 | nnnn0d 12007 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑗 ∈ ℕ0) |
22 | 21 | nn0ge0d 12010 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 0 ≤ 𝑗) |
23 | 15 | adantrl 715 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑘 ∈ ℕ) |
24 | 23 | nnred 11702 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑘 ∈ ℝ) |
25 | 23 | nnnn0d 12007 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑘 ∈ ℕ0) |
26 | 25 | nn0ge0d 12010 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 0 ≤ 𝑘) |
27 | simpll 766 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝐴 ∈ ℂ) | |
28 | 20, 22, 24, 26, 27 | mulcxpd 25432 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → ((𝑗 · 𝑘)↑𝑐𝐴) = ((𝑗↑𝑐𝐴) · (𝑘↑𝑐𝐴))) |
29 | 28 | eqcomd 2764 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → ((𝑗↑𝑐𝐴) · (𝑘↑𝑐𝐴)) = ((𝑗 · 𝑘)↑𝑐𝐴)) |
30 | oveq1 7163 | . . 3 ⊢ (𝑖 = (𝑗 · 𝑘) → (𝑖↑𝑐𝐴) = ((𝑗 · 𝑘)↑𝑐𝐴)) | |
31 | 1, 2, 3, 4, 5, 6, 12, 18, 29, 30 | fsumdvdsmul 25893 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖↑𝑐𝐴)) |
32 | sgmval 25840 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝐴 σ 𝑀) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴)) | |
33 | 1, 32 | syldan 594 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ 𝑀) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴)) |
34 | sgmval 25840 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 σ 𝑁) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴)) | |
35 | 2, 34 | syldan 594 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ 𝑁) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴)) |
36 | 33, 35 | oveq12d 7174 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → ((𝐴 σ 𝑀) · (𝐴 σ 𝑁)) = (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴))) |
37 | 1, 2 | nnmulcld 11740 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑀 · 𝑁) ∈ ℕ) |
38 | sgmval 25840 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 · 𝑁) ∈ ℕ) → (𝐴 σ (𝑀 · 𝑁)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖↑𝑐𝐴)) | |
39 | 37, 38 | syldan 594 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖↑𝑐𝐴)) |
40 | 31, 36, 39 | 3eqtr4rd 2804 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = ((𝐴 σ 𝑀) · (𝐴 σ 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 {crab 3074 class class class wbr 5036 (class class class)co 7156 ℂcc 10586 1c1 10589 · cmul 10593 ℕcn 11687 Σcsu 15103 ∥ cdvds 15668 gcd cgcd 15906 ↑𝑐ccxp 25260 σ csgm 25794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ioo 12796 df-ioc 12797 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-fl 13224 df-mod 13300 df-seq 13432 df-exp 13493 df-fac 13697 df-bc 13726 df-hash 13754 df-shft 14487 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-limsup 14889 df-clim 14906 df-rlim 14907 df-sum 15104 df-ef 15482 df-sin 15484 df-cos 15485 df-pi 15487 df-dvds 15669 df-gcd 15907 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-starv 16652 df-sca 16653 df-vsca 16654 df-ip 16655 df-tset 16656 df-ple 16657 df-ds 16659 df-unif 16660 df-hom 16661 df-cco 16662 df-rest 16768 df-topn 16769 df-0g 16787 df-gsum 16788 df-topgen 16789 df-pt 16790 df-prds 16793 df-xrs 16847 df-qtop 16852 df-imas 16853 df-xps 16855 df-mre 16929 df-mrc 16930 df-acs 16932 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-submnd 18037 df-mulg 18306 df-cntz 18528 df-cmn 18989 df-psmet 20172 df-xmet 20173 df-met 20174 df-bl 20175 df-mopn 20176 df-fbas 20177 df-fg 20178 df-cnfld 20181 df-top 21608 df-topon 21625 df-topsp 21647 df-bases 21660 df-cld 21733 df-ntr 21734 df-cls 21735 df-nei 21812 df-lp 21850 df-perf 21851 df-cn 21941 df-cnp 21942 df-haus 22029 df-tx 22276 df-hmeo 22469 df-fil 22560 df-fm 22652 df-flim 22653 df-flf 22654 df-xms 23036 df-ms 23037 df-tms 23038 df-cncf 23593 df-limc 24579 df-dv 24580 df-log 25261 df-cxp 25262 df-sgm 25800 |
This theorem is referenced by: perfect1 25925 perfectlem1 25926 perfectlem2 25927 perfectALTVlem1 44665 perfectALTVlem2 44666 |
Copyright terms: Public domain | W3C validator |