MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgmmul Structured version   Visualization version   GIF version

Theorem sgmmul 25463
Description: The divisor function for fixed parameter 𝐴 is a multiplicative function. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
sgmmul ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = ((𝐴 σ 𝑀) · (𝐴 σ 𝑁)))

Proof of Theorem sgmmul
Dummy variables 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1187 . . 3 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → 𝑀 ∈ ℕ)
2 simpr2 1188 . . 3 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → 𝑁 ∈ ℕ)
3 simpr3 1189 . . 3 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑀 gcd 𝑁) = 1)
4 eqid 2797 . . 3 {𝑥 ∈ ℕ ∣ 𝑥𝑀} = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
5 eqid 2797 . . 3 {𝑥 ∈ ℕ ∣ 𝑥𝑁} = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
6 eqid 2797 . . 3 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
7 ssrab2 3983 . . . . . 6 {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ ℕ
8 simpr 485 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀}) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀})
97, 8sseldi 3893 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀}) → 𝑗 ∈ ℕ)
109nncnd 11508 . . . 4 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀}) → 𝑗 ∈ ℂ)
11 simpll 763 . . . 4 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀}) → 𝐴 ∈ ℂ)
1210, 11cxpcld 24976 . . 3 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀}) → (𝑗𝑐𝐴) ∈ ℂ)
13 ssrab2 3983 . . . . . 6 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
14 simpr 485 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
1513, 14sseldi 3893 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑘 ∈ ℕ)
1615nncnd 11508 . . . 4 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑘 ∈ ℂ)
17 simpll 763 . . . 4 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝐴 ∈ ℂ)
1816, 17cxpcld 24976 . . 3 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑘𝑐𝐴) ∈ ℂ)
199adantrr 713 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})) → 𝑗 ∈ ℕ)
2019nnred 11507 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})) → 𝑗 ∈ ℝ)
2119nnnn0d 11809 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})) → 𝑗 ∈ ℕ0)
2221nn0ge0d 11812 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})) → 0 ≤ 𝑗)
2315adantrl 712 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})) → 𝑘 ∈ ℕ)
2423nnred 11507 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})) → 𝑘 ∈ ℝ)
2523nnnn0d 11809 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})) → 𝑘 ∈ ℕ0)
2625nn0ge0d 11812 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})) → 0 ≤ 𝑘)
27 simpll 763 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})) → 𝐴 ∈ ℂ)
2820, 22, 24, 26, 27mulcxpd 24996 . . . 4 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})) → ((𝑗 · 𝑘)↑𝑐𝐴) = ((𝑗𝑐𝐴) · (𝑘𝑐𝐴)))
2928eqcomd 2803 . . 3 (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})) → ((𝑗𝑐𝐴) · (𝑘𝑐𝐴)) = ((𝑗 · 𝑘)↑𝑐𝐴))
30 oveq1 7030 . . 3 (𝑖 = (𝑗 · 𝑘) → (𝑖𝑐𝐴) = ((𝑗 · 𝑘)↑𝑐𝐴))
311, 2, 3, 4, 5, 6, 12, 18, 29, 30fsumdvdsmul 25458 . 2 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} (𝑗𝑐𝐴) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑘𝑐𝐴)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖𝑐𝐴))
32 sgmval 25405 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝐴 σ 𝑀) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} (𝑗𝑐𝐴))
331, 32syldan 591 . . 3 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ 𝑀) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} (𝑗𝑐𝐴))
34 sgmval 25405 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 σ 𝑁) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑘𝑐𝐴))
352, 34syldan 591 . . 3 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ 𝑁) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑘𝑐𝐴))
3633, 35oveq12d 7041 . 2 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → ((𝐴 σ 𝑀) · (𝐴 σ 𝑁)) = (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑀} (𝑗𝑐𝐴) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑘𝑐𝐴)))
371, 2nnmulcld 11544 . . 3 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑀 · 𝑁) ∈ ℕ)
38 sgmval 25405 . . 3 ((𝐴 ∈ ℂ ∧ (𝑀 · 𝑁) ∈ ℕ) → (𝐴 σ (𝑀 · 𝑁)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖𝑐𝐴))
3937, 38syldan 591 . 2 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖𝑐𝐴))
4031, 36, 393eqtr4rd 2844 1 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = ((𝐴 σ 𝑀) · (𝐴 σ 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1525  wcel 2083  {crab 3111   class class class wbr 4968  (class class class)co 7023  cc 10388  1c1 10391   · cmul 10395  cn 11492  Σcsu 14880  cdvds 15444   gcd cgcd 15680  𝑐ccxp 24824   σ csgm 25359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-fi 8728  df-sup 8759  df-inf 8760  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-ioc 12597  df-ico 12598  df-icc 12599  df-fz 12747  df-fzo 12888  df-fl 13016  df-mod 13092  df-seq 13224  df-exp 13284  df-fac 13488  df-bc 13517  df-hash 13545  df-shft 14264  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-limsup 14666  df-clim 14683  df-rlim 14684  df-sum 14881  df-ef 15258  df-sin 15260  df-cos 15261  df-pi 15263  df-dvds 15445  df-gcd 15681  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-hom 16422  df-cco 16423  df-rest 16529  df-topn 16530  df-0g 16548  df-gsum 16549  df-topgen 16550  df-pt 16551  df-prds 16554  df-xrs 16608  df-qtop 16613  df-imas 16614  df-xps 16616  df-mre 16690  df-mrc 16691  df-acs 16693  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-submnd 17779  df-mulg 17986  df-cntz 18192  df-cmn 18639  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-fbas 20228  df-fg 20229  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-cld 21315  df-ntr 21316  df-cls 21317  df-nei 21394  df-lp 21432  df-perf 21433  df-cn 21523  df-cnp 21524  df-haus 21611  df-tx 21858  df-hmeo 22051  df-fil 22142  df-fm 22234  df-flim 22235  df-flf 22236  df-xms 22617  df-ms 22618  df-tms 22619  df-cncf 23173  df-limc 24151  df-dv 24152  df-log 24825  df-cxp 24826  df-sgm 25365
This theorem is referenced by:  perfect1  25490  perfectlem1  25491  perfectlem2  25492  perfectALTVlem1  43390  perfectALTVlem2  43391
  Copyright terms: Public domain W3C validator