| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgmmul | Structured version Visualization version GIF version | ||
| Description: The divisor function for fixed parameter 𝐴 is a multiplicative function. (Contributed by Mario Carneiro, 2-Jul-2015.) |
| Ref | Expression |
|---|---|
| sgmmul | ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = ((𝐴 σ 𝑀) · (𝐴 σ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1195 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → 𝑀 ∈ ℕ) | |
| 2 | simpr2 1196 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → 𝑁 ∈ ℕ) | |
| 3 | simpr3 1197 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑀 gcd 𝑁) = 1) | |
| 4 | eqid 2733 | . . 3 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} | |
| 5 | eqid 2733 | . . 3 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} | |
| 6 | eqid 2733 | . . 3 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} | |
| 7 | ssrab2 4029 | . . . . . 6 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ⊆ ℕ | |
| 8 | simpr 484 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) | |
| 9 | 7, 8 | sselid 3928 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝑗 ∈ ℕ) |
| 10 | 9 | nncnd 12148 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝑗 ∈ ℂ) |
| 11 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → 𝐴 ∈ ℂ) | |
| 12 | 10, 11 | cxpcld 26645 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀}) → (𝑗↑𝑐𝐴) ∈ ℂ) |
| 13 | ssrab2 4029 | . . . . . 6 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ | |
| 14 | simpr 484 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
| 15 | 13, 14 | sselid 3928 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑘 ∈ ℕ) |
| 16 | 15 | nncnd 12148 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑘 ∈ ℂ) |
| 17 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝐴 ∈ ℂ) | |
| 18 | 16, 17 | cxpcld 26645 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑘↑𝑐𝐴) ∈ ℂ) |
| 19 | 9 | adantrr 717 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑗 ∈ ℕ) |
| 20 | 19 | nnred 12147 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑗 ∈ ℝ) |
| 21 | 19 | nnnn0d 12449 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑗 ∈ ℕ0) |
| 22 | 21 | nn0ge0d 12452 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 0 ≤ 𝑗) |
| 23 | 15 | adantrl 716 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑘 ∈ ℕ) |
| 24 | 23 | nnred 12147 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑘 ∈ ℝ) |
| 25 | 23 | nnnn0d 12449 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝑘 ∈ ℕ0) |
| 26 | 25 | nn0ge0d 12452 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 0 ≤ 𝑘) |
| 27 | simpll 766 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → 𝐴 ∈ ℂ) | |
| 28 | 20, 22, 24, 26, 27 | mulcxpd 26665 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → ((𝑗 · 𝑘)↑𝑐𝐴) = ((𝑗↑𝑐𝐴) · (𝑘↑𝑐𝐴))) |
| 29 | 28 | eqcomd 2739 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) → ((𝑗↑𝑐𝐴) · (𝑘↑𝑐𝐴)) = ((𝑗 · 𝑘)↑𝑐𝐴)) |
| 30 | oveq1 7359 | . . 3 ⊢ (𝑖 = (𝑗 · 𝑘) → (𝑖↑𝑐𝐴) = ((𝑗 · 𝑘)↑𝑐𝐴)) | |
| 31 | 1, 2, 3, 4, 5, 6, 12, 18, 29, 30 | fsumdvdsmul 27133 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖↑𝑐𝐴)) |
| 32 | sgmval 27080 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝐴 σ 𝑀) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴)) | |
| 33 | 1, 32 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ 𝑀) = Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴)) |
| 34 | sgmval 27080 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 σ 𝑁) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴)) | |
| 35 | 2, 34 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ 𝑁) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴)) |
| 36 | 33, 35 | oveq12d 7370 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → ((𝐴 σ 𝑀) · (𝐴 σ 𝑁)) = (Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} (𝑗↑𝑐𝐴) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑘↑𝑐𝐴))) |
| 37 | 1, 2 | nnmulcld 12185 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑀 · 𝑁) ∈ ℕ) |
| 38 | sgmval 27080 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 · 𝑁) ∈ ℕ) → (𝐴 σ (𝑀 · 𝑁)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖↑𝑐𝐴)) | |
| 39 | 37, 38 | syldan 591 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = Σ𝑖 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} (𝑖↑𝑐𝐴)) |
| 40 | 31, 36, 39 | 3eqtr4rd 2779 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝐴 σ (𝑀 · 𝑁)) = ((𝐴 σ 𝑀) · (𝐴 σ 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {crab 3396 class class class wbr 5093 (class class class)co 7352 ℂcc 11011 1c1 11014 · cmul 11018 ℕcn 12132 Σcsu 15595 ∥ cdvds 16165 gcd cgcd 16407 ↑𝑐ccxp 26492 σ csgm 27034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-ef 15976 df-sin 15978 df-cos 15979 df-pi 15981 df-dvds 16166 df-gcd 16408 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-log 26493 df-cxp 26494 df-sgm 27040 |
| This theorem is referenced by: perfect1 27167 perfectlem1 27168 perfectlem2 27169 perfectALTVlem1 47845 perfectALTVlem2 47846 |
| Copyright terms: Public domain | W3C validator |