MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl1eudisval Structured version   Visualization version   GIF version

Theorem ehl1eudisval 24173
Description: The value of the Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl1eudis.e 𝐸 = (𝔼hil‘1)
ehl1eudis.x 𝑋 = (ℝ ↑m {1})
ehl1eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl1eudisval ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (abs‘((𝐹‘1) − (𝐺‘1))))

Proof of Theorem ehl1eudisval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6673 . . 3 (𝑥 = 𝐹 → (𝑥‘1) = (𝐹‘1))
21fvoveq1d 7192 . 2 (𝑥 = 𝐹 → (abs‘((𝑥‘1) − (𝑦‘1))) = (abs‘((𝐹‘1) − (𝑦‘1))))
3 fveq1 6673 . . . 4 (𝑦 = 𝐺 → (𝑦‘1) = (𝐺‘1))
43oveq2d 7186 . . 3 (𝑦 = 𝐺 → ((𝐹‘1) − (𝑦‘1)) = ((𝐹‘1) − (𝐺‘1)))
54fveq2d 6678 . 2 (𝑦 = 𝐺 → (abs‘((𝐹‘1) − (𝑦‘1))) = (abs‘((𝐹‘1) − (𝐺‘1))))
6 ehl1eudis.e . . 3 𝐸 = (𝔼hil‘1)
7 ehl1eudis.x . . 3 𝑋 = (ℝ ↑m {1})
8 ehl1eudis.d . . 3 𝐷 = (dist‘𝐸)
96, 7, 8ehl1eudis 24172 . 2 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (abs‘((𝑥‘1) − (𝑦‘1))))
10 fvex 6687 . 2 (abs‘((𝐹‘1) − (𝐺‘1))) ∈ V
112, 5, 9, 10ovmpo 7325 1 ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (abs‘((𝐹‘1) − (𝐺‘1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  {csn 4516  cfv 6339  (class class class)co 7170  m cmap 8437  cr 10614  1c1 10616  cmin 10948  abscabs 14683  distcds 16677  𝔼hilcehl 24136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-tpos 7921  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-sup 8979  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-rp 12473  df-fz 12982  df-fzo 13125  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-sum 15136  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-0g 16818  df-gsum 16819  df-prds 16824  df-pws 16826  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-mhm 18072  df-grp 18222  df-minusg 18223  df-sbg 18224  df-subg 18394  df-ghm 18474  df-cntz 18565  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-ring 19418  df-cring 19419  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-dvr 19555  df-rnghom 19589  df-drng 19623  df-field 19624  df-subrg 19652  df-staf 19735  df-srng 19736  df-lmod 19755  df-lss 19823  df-sra 20063  df-rgmod 20064  df-cnfld 20218  df-refld 20421  df-dsmm 20548  df-frlm 20563  df-nm 23335  df-tng 23337  df-tcph 23921  df-rrx 24137  df-ehl 24138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator