Proof of Theorem pgnbgreunbgrlem5lem1
| Step | Hyp | Ref
| Expression |
| 1 | | 5eluz3 12848 |
. . . . . . . 8
⊢ 5 ∈
(ℤ≥‘3) |
| 2 | | pglem 48072 |
. . . . . . . 8
⊢ 2 ∈
(1..^(⌈‘(5 / 2))) |
| 3 | 1, 2 | pm3.2i 470 |
. . . . . . 7
⊢ (5 ∈
(ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) |
| 4 | | 1ex 11176 |
. . . . . . . 8
⊢ 1 ∈
V |
| 5 | | vex 3454 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 6 | 4, 5 | op1st 7978 |
. . . . . . 7
⊢
(1st ‘〈1, 𝑦〉) = 1 |
| 7 | | simpr 484 |
. . . . . . 7
⊢ (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ {〈1,
𝑦〉, 〈1, 𝑏〉} ∈ 𝐸) → {〈1, 𝑦〉, 〈1, 𝑏〉} ∈ 𝐸) |
| 8 | | eqid 2730 |
. . . . . . . 8
⊢
(1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 /
2))) |
| 9 | | pgnbgreunbgr.g |
. . . . . . . 8
⊢ 𝐺 = (5 gPetersenGr
2) |
| 10 | | pgnbgreunbgr.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 11 | | pgnbgreunbgr.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
| 12 | 8, 9, 10, 11 | gpgvtxedg1 48045 |
. . . . . . 7
⊢ (((5
∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) ∧ (1st ‘〈1, 𝑦〉) = 1 ∧ {〈1, 𝑦〉, 〈1, 𝑏〉} ∈ 𝐸) → (〈1, 𝑏〉 = 〈1, (((2nd
‘〈1, 𝑦〉) +
2) mod 5)〉 ∨ 〈1, 𝑏〉 = 〈0, (2nd
‘〈1, 𝑦〉)〉 ∨ 〈1, 𝑏〉 = 〈1,
(((2nd ‘〈1, 𝑦〉) − 2) mod
5)〉)) |
| 13 | 3, 6, 7, 12 | mp3an12i 1467 |
. . . . . 6
⊢ (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ {〈1,
𝑦〉, 〈1, 𝑏〉} ∈ 𝐸) → (〈1, 𝑏〉 = 〈1, (((2nd
‘〈1, 𝑦〉) +
2) mod 5)〉 ∨ 〈1, 𝑏〉 = 〈0, (2nd
‘〈1, 𝑦〉)〉 ∨ 〈1, 𝑏〉 = 〈1,
(((2nd ‘〈1, 𝑦〉) − 2) mod
5)〉)) |
| 14 | 13 | ex 412 |
. . . . 5
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
({〈1, 𝑦〉,
〈1, 𝑏〉} ∈
𝐸 → (〈1, 𝑏〉 = 〈1,
(((2nd ‘〈1, 𝑦〉) + 2) mod 5)〉 ∨ 〈1, 𝑏〉 = 〈0,
(2nd ‘〈1, 𝑦〉)〉 ∨ 〈1, 𝑏〉 = 〈1,
(((2nd ‘〈1, 𝑦〉) − 2) mod
5)〉))) |
| 15 | | vex 3454 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
| 16 | 4, 15 | opth 5438 |
. . . . . . . 8
⊢ (〈1,
𝑏〉 = 〈1,
(((2nd ‘〈1, 𝑦〉) + 2) mod 5)〉 ↔ (1 = 1 ∧
𝑏 = (((2nd
‘〈1, 𝑦〉) +
2) mod 5))) |
| 17 | 4, 5 | op2nd 7979 |
. . . . . . . . . . . 12
⊢
(2nd ‘〈1, 𝑦〉) = 𝑦 |
| 18 | 17 | oveq1i 7399 |
. . . . . . . . . . 11
⊢
((2nd ‘〈1, 𝑦〉) + 2) = (𝑦 + 2) |
| 19 | 18 | oveq1i 7399 |
. . . . . . . . . 10
⊢
(((2nd ‘〈1, 𝑦〉) + 2) mod 5) = ((𝑦 + 2) mod 5) |
| 20 | 19 | eqeq2i 2743 |
. . . . . . . . 9
⊢ (𝑏 = (((2nd
‘〈1, 𝑦〉) +
2) mod 5) ↔ 𝑏 =
((𝑦 + 2) mod
5)) |
| 21 | 9, 11 | pgnioedg2 48089 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0..^5) → ¬
{〈1, ((𝑦 + 2) mod
5)〉, 〈0, ((𝑦 + 1)
mod 5)〉} ∈ 𝐸) |
| 22 | 21 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ¬
{〈1, ((𝑦 + 2) mod
5)〉, 〈0, ((𝑦 + 1)
mod 5)〉} ∈ 𝐸) |
| 23 | | opeq2 4840 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ((𝑦 + 2) mod 5) → 〈1, 𝑏〉 = 〈1, ((𝑦 + 2) mod
5)〉) |
| 24 | 23 | preq1d 4705 |
. . . . . . . . . . . 12
⊢ (𝑏 = ((𝑦 + 2) mod 5) → {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} = {〈1,
((𝑦 + 2) mod 5)〉,
〈0, ((𝑦 + 1) mod
5)〉}) |
| 25 | 24 | eleq1d 2814 |
. . . . . . . . . . 11
⊢ (𝑏 = ((𝑦 + 2) mod 5) → ({〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸 ↔ {〈1, ((𝑦 + 2) mod 5)〉, 〈0,
((𝑦 + 1) mod 5)〉}
∈ 𝐸)) |
| 26 | 25 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑏 = ((𝑦 + 2) mod 5) → (¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸 ↔ ¬ {〈1, ((𝑦 + 2) mod 5)〉, 〈0,
((𝑦 + 1) mod 5)〉}
∈ 𝐸)) |
| 27 | 22, 26 | imbitrrid 246 |
. . . . . . . . 9
⊢ (𝑏 = ((𝑦 + 2) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 28 | 20, 27 | sylbi 217 |
. . . . . . . 8
⊢ (𝑏 = (((2nd
‘〈1, 𝑦〉) +
2) mod 5) → ((𝑏 ∈
(0..^5) ∧ 𝑦 ∈
(0..^5)) → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 29 | 16, 28 | simplbiim 504 |
. . . . . . 7
⊢ (〈1,
𝑏〉 = 〈1,
(((2nd ‘〈1, 𝑦〉) + 2) mod 5)〉 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ¬
{〈1, 𝑏〉, 〈0,
((𝑦 + 1) mod 5)〉}
∈ 𝐸)) |
| 30 | 29 | com12 32 |
. . . . . 6
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
(〈1, 𝑏〉 =
〈1, (((2nd ‘〈1, 𝑦〉) + 2) mod 5)〉 → ¬
{〈1, 𝑏〉, 〈0,
((𝑦 + 1) mod 5)〉}
∈ 𝐸)) |
| 31 | 4, 15 | opth 5438 |
. . . . . . . 8
⊢ (〈1,
𝑏〉 = 〈0,
(2nd ‘〈1, 𝑦〉)〉 ↔ (1 = 0 ∧ 𝑏 = (2nd
‘〈1, 𝑦〉))) |
| 32 | | ax-1ne0 11143 |
. . . . . . . . . 10
⊢ 1 ≠
0 |
| 33 | | eqneqall 2937 |
. . . . . . . . . 10
⊢ (1 = 0
→ (1 ≠ 0 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 34 | 32, 33 | mpi 20 |
. . . . . . . . 9
⊢ (1 = 0
→ ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) |
| 35 | 34 | adantr 480 |
. . . . . . . 8
⊢ ((1 = 0
∧ 𝑏 = (2nd
‘〈1, 𝑦〉))
→ ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) |
| 36 | 31, 35 | sylbi 217 |
. . . . . . 7
⊢ (〈1,
𝑏〉 = 〈0,
(2nd ‘〈1, 𝑦〉)〉 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) |
| 37 | 36 | a1i 11 |
. . . . . 6
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
(〈1, 𝑏〉 =
〈0, (2nd ‘〈1, 𝑦〉)〉 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 38 | 4, 15 | opth 5438 |
. . . . . . . 8
⊢ (〈1,
𝑏〉 = 〈1,
(((2nd ‘〈1, 𝑦〉) − 2) mod 5)〉 ↔ (1 = 1
∧ 𝑏 = (((2nd
‘〈1, 𝑦〉)
− 2) mod 5))) |
| 39 | 17 | oveq1i 7399 |
. . . . . . . . . . 11
⊢
((2nd ‘〈1, 𝑦〉) − 2) = (𝑦 − 2) |
| 40 | 39 | oveq1i 7399 |
. . . . . . . . . 10
⊢
(((2nd ‘〈1, 𝑦〉) − 2) mod 5) = ((𝑦 − 2) mod
5) |
| 41 | 40 | eqeq2i 2743 |
. . . . . . . . 9
⊢ (𝑏 = (((2nd
‘〈1, 𝑦〉)
− 2) mod 5) ↔ 𝑏
= ((𝑦 − 2) mod
5)) |
| 42 | 9, 11 | pgnioedg1 48088 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0..^5) → ¬
{〈1, ((𝑦 − 2)
mod 5)〉, 〈0, ((𝑦
+ 1) mod 5)〉} ∈ 𝐸) |
| 43 | 42 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ¬
{〈1, ((𝑦 − 2)
mod 5)〉, 〈0, ((𝑦
+ 1) mod 5)〉} ∈ 𝐸) |
| 44 | | opeq2 4840 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ((𝑦 − 2) mod 5) → 〈1, 𝑏〉 = 〈1, ((𝑦 − 2) mod
5)〉) |
| 45 | 44 | preq1d 4705 |
. . . . . . . . . . . 12
⊢ (𝑏 = ((𝑦 − 2) mod 5) → {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} = {〈1,
((𝑦 − 2) mod
5)〉, 〈0, ((𝑦 + 1)
mod 5)〉}) |
| 46 | 45 | eleq1d 2814 |
. . . . . . . . . . 11
⊢ (𝑏 = ((𝑦 − 2) mod 5) → ({〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸 ↔ {〈1, ((𝑦 − 2) mod 5)〉,
〈0, ((𝑦 + 1) mod
5)〉} ∈ 𝐸)) |
| 47 | 46 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑏 = ((𝑦 − 2) mod 5) → (¬ {〈1,
𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸 ↔ ¬ {〈1, ((𝑦 − 2) mod 5)〉,
〈0, ((𝑦 + 1) mod
5)〉} ∈ 𝐸)) |
| 48 | 43, 47 | imbitrrid 246 |
. . . . . . . . 9
⊢ (𝑏 = ((𝑦 − 2) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ¬
{〈1, 𝑏〉, 〈0,
((𝑦 + 1) mod 5)〉}
∈ 𝐸)) |
| 49 | 41, 48 | sylbi 217 |
. . . . . . . 8
⊢ (𝑏 = (((2nd
‘〈1, 𝑦〉)
− 2) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 50 | 38, 49 | simplbiim 504 |
. . . . . . 7
⊢ (〈1,
𝑏〉 = 〈1,
(((2nd ‘〈1, 𝑦〉) − 2) mod 5)〉 →
((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) →
¬ {〈1, 𝑏〉,
〈0, ((𝑦 + 1) mod
5)〉} ∈ 𝐸)) |
| 51 | 50 | com12 32 |
. . . . . 6
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
(〈1, 𝑏〉 =
〈1, (((2nd ‘〈1, 𝑦〉) − 2) mod 5)〉 → ¬
{〈1, 𝑏〉, 〈0,
((𝑦 + 1) mod 5)〉}
∈ 𝐸)) |
| 52 | 30, 37, 51 | 3jaod 1431 |
. . . . 5
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
((〈1, 𝑏〉 =
〈1, (((2nd ‘〈1, 𝑦〉) + 2) mod 5)〉 ∨ 〈1, 𝑏〉 = 〈0,
(2nd ‘〈1, 𝑦〉)〉 ∨ 〈1, 𝑏〉 = 〈1,
(((2nd ‘〈1, 𝑦〉) − 2) mod 5)〉) → ¬
{〈1, 𝑏〉, 〈0,
((𝑦 + 1) mod 5)〉}
∈ 𝐸)) |
| 53 | 14, 52 | syld 47 |
. . . 4
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
({〈1, 𝑦〉,
〈1, 𝑏〉} ∈
𝐸 → ¬ {〈1,
𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 54 | 53 | adantl 481 |
. . 3
⊢ (((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈1, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({〈1, 𝑦〉, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 55 | | preq1 4699 |
. . . . . . 7
⊢ (𝐾 = 〈1, 𝑦〉 → {𝐾, 〈1, 𝑏〉} = {〈1, 𝑦〉, 〈1, 𝑏〉}) |
| 56 | 55 | eleq1d 2814 |
. . . . . 6
⊢ (𝐾 = 〈1, 𝑦〉 → ({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ↔ {〈1, 𝑦〉, 〈1, 𝑏〉} ∈ 𝐸)) |
| 57 | 56 | adantl 481 |
. . . . 5
⊢ ((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈1, 𝑦〉) → ({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ↔ {〈1, 𝑦〉, 〈1, 𝑏〉} ∈ 𝐸)) |
| 58 | | preq2 4700 |
. . . . . . . 8
⊢ (𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 → {〈1, 𝑏〉, 𝐿} = {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉}) |
| 59 | 58 | eleq1d 2814 |
. . . . . . 7
⊢ (𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 → ({〈1, 𝑏〉, 𝐿} ∈ 𝐸 ↔ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 60 | 59 | notbid 318 |
. . . . . 6
⊢ (𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 → (¬ {〈1,
𝑏〉, 𝐿} ∈ 𝐸 ↔ ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 61 | 60 | adantr 480 |
. . . . 5
⊢ ((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈1, 𝑦〉) → (¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸 ↔ ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 62 | 57, 61 | imbi12d 344 |
. . . 4
⊢ ((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈1, 𝑦〉) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) ↔ ({〈1, 𝑦〉, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸))) |
| 63 | 62 | adantr 480 |
. . 3
⊢ (((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈1, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) ↔ ({〈1, 𝑦〉, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸))) |
| 64 | 54, 63 | mpbird 257 |
. 2
⊢ (((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈1, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐾, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸)) |
| 65 | 64 | imp 406 |
1
⊢ ((((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈1, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈1, 𝑏〉} ∈ 𝐸) → ¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) |