![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgrecl | Structured version Visualization version GIF version |
Description: Real closure of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.) |
Ref | Expression |
---|---|
itgrecl.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
itgrecl.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
Ref | Expression |
---|---|
itgrecl | ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgrecl.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
2 | itgrecl.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
3 | 1, 2 | itgrevallem1 23901 | . 2 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))) |
4 | 1 | iblrelem 23897 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))) |
5 | 2, 4 | mpbid 224 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)) |
6 | resubcl 10638 | . . . 4 ⊢ (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) ∈ ℝ) | |
7 | 6 | 3adant1 1161 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) ∈ ℝ) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) ∈ ℝ) |
9 | 3, 8 | eqeltrd 2879 | 1 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 ifcif 4278 class class class wbr 4844 ↦ cmpt 4923 ‘cfv 6102 (class class class)co 6879 ℝcr 10224 0cc0 10225 ≤ cle 10365 − cmin 10557 -cneg 10558 MblFncmbf 23721 ∫2citg2 23723 𝐿1cibl 23724 ∫citg 23725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-inf2 8789 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 ax-pre-sup 10303 ax-addf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-disj 4813 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-se 5273 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-isom 6111 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-of 7132 df-ofr 7133 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-2o 7801 df-oadd 7804 df-er 7983 df-map 8098 df-pm 8099 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-sup 8591 df-inf 8592 df-oi 8658 df-card 9052 df-cda 9279 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-n0 11580 df-z 11666 df-uz 11930 df-q 12033 df-rp 12074 df-xadd 12193 df-ioo 12427 df-ico 12429 df-icc 12430 df-fz 12580 df-fzo 12720 df-fl 12847 df-mod 12923 df-seq 13055 df-exp 13114 df-hash 13370 df-cj 14179 df-re 14180 df-im 14181 df-sqrt 14315 df-abs 14316 df-clim 14559 df-sum 14757 df-xmet 20060 df-met 20061 df-ovol 23571 df-vol 23572 df-mbf 23726 df-itg1 23727 df-itg2 23728 df-ibl 23729 df-itg 23730 df-0p 23777 |
This theorem is referenced by: itgre 23907 itgim 23908 itgabs 23941 ftc1a 24140 ftc1lem4 24142 itgulm 24502 areaf 25039 itgabsnc 33966 ftc1cnnclem 33970 fourierdlem16 41078 fourierdlem21 41083 fourierdlem22 41084 fourierdlem47 41108 fourierdlem87 41148 fourierdlem95 41156 fourierdlem103 41164 fourierdlem104 41165 etransclem23 41212 |
Copyright terms: Public domain | W3C validator |