| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvun | Structured version Visualization version GIF version | ||
| Description: Condition for the union of the derivatives of two disjoint functions to be equal to the derivative of the union of the two functions. If 𝐴 and 𝐵 are open sets, this condition (dvun.n) is satisfied by isopn3i 22985. (Contributed by SN, 30-Sep-2025.) |
| Ref | Expression |
|---|---|
| dvun.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvun.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| dvun.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvun.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| dvun.g | ⊢ (𝜑 → 𝐺:𝐵⟶ℂ) |
| dvun.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| dvun.b | ⊢ (𝜑 → 𝐵 ⊆ 𝑆) |
| dvun.d | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| dvun.n | ⊢ (𝜑 → (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵)) = ((int‘𝐽)‘(𝐴 ∪ 𝐵))) |
| Ref | Expression |
|---|---|
| dvun | ⊢ (𝜑 → ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∪ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 5948 | . . 3 ⊢ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵))) = (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) | |
| 2 | dvun.n | . . . 4 ⊢ (𝜑 → (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵)) = ((int‘𝐽)‘(𝐴 ∪ 𝐵))) | |
| 3 | 2 | reseq2d 5934 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 4 | 1, 3 | eqtr3id 2778 | . 2 ⊢ (𝜑 → (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 5 | dvun.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 6 | dvun.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 7 | dvun.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐵⟶ℂ) | |
| 8 | dvun.d | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 9 | 6, 7, 8 | fun2d 6692 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) |
| 10 | dvun.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 11 | dvun.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑆) | |
| 12 | 10, 11 | unssd 4145 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑆) |
| 13 | dvun.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 14 | dvun.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 15 | 13, 14 | dvres 25828 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ 𝐴 ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴))) |
| 16 | 5, 9, 12, 10, 15 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴))) |
| 17 | 6 | ffnd 6657 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 18 | 7 | ffnd 6657 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 19 | fnunres1 6598 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) | |
| 20 | 17, 18, 8, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
| 21 | 20 | oveq2d 7369 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = (𝑆 D 𝐹)) |
| 22 | 16, 21 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) = (𝑆 D 𝐹)) |
| 23 | 13, 14 | dvres 25828 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) |
| 24 | 5, 9, 12, 11, 23 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) |
| 25 | fnunres2 6599 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) | |
| 26 | 17, 18, 8, 25 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) |
| 27 | 26 | oveq2d 7369 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = (𝑆 D 𝐺)) |
| 28 | 24, 27 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵)) = (𝑆 D 𝐺)) |
| 29 | 22, 28 | uneq12d 4122 | . 2 ⊢ (𝜑 → (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) = ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺))) |
| 30 | 13, 14 | dvres 25828 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ (𝐴 ∪ 𝐵) ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 31 | 5, 9, 12, 12, 30 | syl22anc 838 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 32 | 9 | ffnd 6657 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
| 33 | fnresdm 6605 | . . . . 5 ⊢ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) → ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵)) = (𝐹 ∪ 𝐺)) | |
| 34 | 32, 33 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵)) = (𝐹 ∪ 𝐺)) |
| 35 | 34 | oveq2d 7369 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = (𝑆 D (𝐹 ∪ 𝐺))) |
| 36 | 31, 35 | eqtr3d 2766 | . 2 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵))) = (𝑆 D (𝐹 ∪ 𝐺))) |
| 37 | 4, 29, 36 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∪ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3903 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 ↾ cres 5625 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ↾t crest 17342 TopOpenctopn 17343 ℂfldccnfld 21279 intcnt 22920 D cdv 25780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-rest 17344 df-topn 17345 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-cnp 23131 df-xms 24224 df-ms 24225 df-limc 25783 df-dv 25784 |
| This theorem is referenced by: redvmptabs 42333 |
| Copyright terms: Public domain | W3C validator |