| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvun | Structured version Visualization version GIF version | ||
| Description: Condition for the union of the derivatives of two disjoint functions to be equal to the derivative of the union of the two functions. If 𝐴 and 𝐵 are open sets, this condition (dvun.n) is satisfied by isopn3i 22995. (Contributed by SN, 30-Sep-2025.) |
| Ref | Expression |
|---|---|
| dvun.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvun.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| dvun.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvun.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| dvun.g | ⊢ (𝜑 → 𝐺:𝐵⟶ℂ) |
| dvun.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| dvun.b | ⊢ (𝜑 → 𝐵 ⊆ 𝑆) |
| dvun.d | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| dvun.n | ⊢ (𝜑 → (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵)) = ((int‘𝐽)‘(𝐴 ∪ 𝐵))) |
| Ref | Expression |
|---|---|
| dvun | ⊢ (𝜑 → ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∪ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 5942 | . . 3 ⊢ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵))) = (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) | |
| 2 | dvun.n | . . . 4 ⊢ (𝜑 → (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵)) = ((int‘𝐽)‘(𝐴 ∪ 𝐵))) | |
| 3 | 2 | reseq2d 5928 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 4 | 1, 3 | eqtr3id 2780 | . 2 ⊢ (𝜑 → (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 5 | dvun.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 6 | dvun.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 7 | dvun.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐵⟶ℂ) | |
| 8 | dvun.d | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 9 | 6, 7, 8 | fun2d 6687 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) |
| 10 | dvun.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 11 | dvun.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑆) | |
| 12 | 10, 11 | unssd 4142 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑆) |
| 13 | dvun.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 14 | dvun.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 15 | 13, 14 | dvres 25837 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ 𝐴 ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴))) |
| 16 | 5, 9, 12, 10, 15 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴))) |
| 17 | 6 | ffnd 6652 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 18 | 7 | ffnd 6652 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 19 | fnunres1 6593 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) | |
| 20 | 17, 18, 8, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
| 21 | 20 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = (𝑆 D 𝐹)) |
| 22 | 16, 21 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) = (𝑆 D 𝐹)) |
| 23 | 13, 14 | dvres 25837 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) |
| 24 | 5, 9, 12, 11, 23 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) |
| 25 | fnunres2 6594 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) | |
| 26 | 17, 18, 8, 25 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) |
| 27 | 26 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = (𝑆 D 𝐺)) |
| 28 | 24, 27 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵)) = (𝑆 D 𝐺)) |
| 29 | 22, 28 | uneq12d 4119 | . 2 ⊢ (𝜑 → (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) = ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺))) |
| 30 | 13, 14 | dvres 25837 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ (𝐴 ∪ 𝐵) ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 31 | 5, 9, 12, 12, 30 | syl22anc 838 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 32 | 9 | ffnd 6652 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
| 33 | fnresdm 6600 | . . . . 5 ⊢ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) → ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵)) = (𝐹 ∪ 𝐺)) | |
| 34 | 32, 33 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵)) = (𝐹 ∪ 𝐺)) |
| 35 | 34 | oveq2d 7362 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = (𝑆 D (𝐹 ∪ 𝐺))) |
| 36 | 31, 35 | eqtr3d 2768 | . 2 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵))) = (𝑆 D (𝐹 ∪ 𝐺))) |
| 37 | 4, 29, 36 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∪ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∪ cun 3900 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 ↾ cres 5618 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ↾t crest 17321 TopOpenctopn 17322 ℂfldccnfld 21289 intcnt 22930 D cdv 25789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-fz 13405 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-rest 17323 df-topn 17324 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-cnp 23141 df-xms 24233 df-ms 24234 df-limc 25792 df-dv 25793 |
| This theorem is referenced by: redvmptabs 42392 |
| Copyright terms: Public domain | W3C validator |