| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvun | Structured version Visualization version GIF version | ||
| Description: Condition for the union of the derivatives of two disjoint functions to be equal to the derivative of the union of the two functions. If 𝐴 and 𝐵 are open sets, this condition (dvun.n) is satisfied by isopn3i 23018. (Contributed by SN, 30-Sep-2025.) |
| Ref | Expression |
|---|---|
| dvun.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvun.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| dvun.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvun.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| dvun.g | ⊢ (𝜑 → 𝐺:𝐵⟶ℂ) |
| dvun.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| dvun.b | ⊢ (𝜑 → 𝐵 ⊆ 𝑆) |
| dvun.d | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| dvun.n | ⊢ (𝜑 → (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵)) = ((int‘𝐽)‘(𝐴 ∪ 𝐵))) |
| Ref | Expression |
|---|---|
| dvun | ⊢ (𝜑 → ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∪ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 5980 | . . 3 ⊢ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵))) = (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) | |
| 2 | dvun.n | . . . 4 ⊢ (𝜑 → (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵)) = ((int‘𝐽)‘(𝐴 ∪ 𝐵))) | |
| 3 | 2 | reseq2d 5966 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 4 | 1, 3 | eqtr3id 2784 | . 2 ⊢ (𝜑 → (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 5 | dvun.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 6 | dvun.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 7 | dvun.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐵⟶ℂ) | |
| 8 | dvun.d | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 9 | 6, 7, 8 | fun2d 6741 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) |
| 10 | dvun.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 11 | dvun.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑆) | |
| 12 | 10, 11 | unssd 4167 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑆) |
| 13 | dvun.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 14 | dvun.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 15 | 13, 14 | dvres 25862 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ 𝐴 ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴))) |
| 16 | 5, 9, 12, 10, 15 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴))) |
| 17 | 6 | ffnd 6706 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 18 | 7 | ffnd 6706 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 19 | fnunres1 6649 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) | |
| 20 | 17, 18, 8, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
| 21 | 20 | oveq2d 7419 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = (𝑆 D 𝐹)) |
| 22 | 16, 21 | eqtr3d 2772 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) = (𝑆 D 𝐹)) |
| 23 | 13, 14 | dvres 25862 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) |
| 24 | 5, 9, 12, 11, 23 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) |
| 25 | fnunres2 6650 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) | |
| 26 | 17, 18, 8, 25 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) |
| 27 | 26 | oveq2d 7419 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = (𝑆 D 𝐺)) |
| 28 | 24, 27 | eqtr3d 2772 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵)) = (𝑆 D 𝐺)) |
| 29 | 22, 28 | uneq12d 4144 | . 2 ⊢ (𝜑 → (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) = ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺))) |
| 30 | 13, 14 | dvres 25862 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ (𝐴 ∪ 𝐵) ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 31 | 5, 9, 12, 12, 30 | syl22anc 838 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 32 | 9 | ffnd 6706 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
| 33 | fnresdm 6656 | . . . . 5 ⊢ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) → ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵)) = (𝐹 ∪ 𝐺)) | |
| 34 | 32, 33 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵)) = (𝐹 ∪ 𝐺)) |
| 35 | 34 | oveq2d 7419 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = (𝑆 D (𝐹 ∪ 𝐺))) |
| 36 | 31, 35 | eqtr3d 2772 | . 2 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵))) = (𝑆 D (𝐹 ∪ 𝐺))) |
| 37 | 4, 29, 36 | 3eqtr3d 2778 | 1 ⊢ (𝜑 → ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∪ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3924 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 ↾ cres 5656 Fn wfn 6525 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ↾t crest 17432 TopOpenctopn 17433 ℂfldccnfld 21313 intcnt 22953 D cdv 25814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fi 9421 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-fz 13523 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-rest 17434 df-topn 17435 df-topgen 17455 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-cnp 23164 df-xms 24257 df-ms 24258 df-limc 25817 df-dv 25818 |
| This theorem is referenced by: redvmptabs 42350 |
| Copyright terms: Public domain | W3C validator |