| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvun | Structured version Visualization version GIF version | ||
| Description: Condition for the union of the derivatives of two disjoint functions to be equal to the derivative of the union of the two functions. If 𝐴 and 𝐵 are open sets, this condition (dvun.n) is satisfied by isopn3i 23090. (Contributed by SN, 30-Sep-2025.) |
| Ref | Expression |
|---|---|
| dvun.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvun.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| dvun.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvun.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| dvun.g | ⊢ (𝜑 → 𝐺:𝐵⟶ℂ) |
| dvun.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| dvun.b | ⊢ (𝜑 → 𝐵 ⊆ 𝑆) |
| dvun.d | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| dvun.n | ⊢ (𝜑 → (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵)) = ((int‘𝐽)‘(𝐴 ∪ 𝐵))) |
| Ref | Expression |
|---|---|
| dvun | ⊢ (𝜑 → ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∪ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi 6011 | . . 3 ⊢ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵))) = (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) | |
| 2 | dvun.n | . . . 4 ⊢ (𝜑 → (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵)) = ((int‘𝐽)‘(𝐴 ∪ 𝐵))) | |
| 3 | 2 | reseq2d 5997 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ (((int‘𝐽)‘𝐴) ∪ ((int‘𝐽)‘𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 4 | 1, 3 | eqtr3id 2791 | . 2 ⊢ (𝜑 → (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 5 | dvun.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 6 | dvun.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 7 | dvun.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐵⟶ℂ) | |
| 8 | dvun.d | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 9 | 6, 7, 8 | fun2d 6772 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) |
| 10 | dvun.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 11 | dvun.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑆) | |
| 12 | 10, 11 | unssd 4192 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑆) |
| 13 | dvun.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 14 | dvun.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 15 | 13, 14 | dvres 25946 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ 𝐴 ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴))) |
| 16 | 5, 9, 12, 10, 15 | syl22anc 839 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴))) |
| 17 | 6 | ffnd 6737 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 18 | 7 | ffnd 6737 | . . . . . 6 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 19 | fnunres1 6680 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) | |
| 20 | 17, 18, 8, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
| 21 | 20 | oveq2d 7447 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐴)) = (𝑆 D 𝐹)) |
| 22 | 16, 21 | eqtr3d 2779 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) = (𝑆 D 𝐹)) |
| 23 | 13, 14 | dvres 25946 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) |
| 24 | 5, 9, 12, 11, 23 | syl22anc 839 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) |
| 25 | fnunres2 6681 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) | |
| 26 | 17, 18, 8, 25 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) |
| 27 | 26 | oveq2d 7447 | . . . 4 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ 𝐵)) = (𝑆 D 𝐺)) |
| 28 | 24, 27 | eqtr3d 2779 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵)) = (𝑆 D 𝐺)) |
| 29 | 22, 28 | uneq12d 4169 | . 2 ⊢ (𝜑 → (((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐴)) ∪ ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘𝐵))) = ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺))) |
| 30 | 13, 14 | dvres 25946 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶ℂ) ∧ ((𝐴 ∪ 𝐵) ⊆ 𝑆 ∧ (𝐴 ∪ 𝐵) ⊆ 𝑆)) → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 31 | 5, 9, 12, 12, 30 | syl22anc 839 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 32 | 9 | ffnd 6737 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵)) |
| 33 | fnresdm 6687 | . . . . 5 ⊢ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐵) → ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵)) = (𝐹 ∪ 𝐺)) | |
| 34 | 32, 33 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵)) = (𝐹 ∪ 𝐺)) |
| 35 | 34 | oveq2d 7447 | . . 3 ⊢ (𝜑 → (𝑆 D ((𝐹 ∪ 𝐺) ↾ (𝐴 ∪ 𝐵))) = (𝑆 D (𝐹 ∪ 𝐺))) |
| 36 | 31, 35 | eqtr3d 2779 | . 2 ⊢ (𝜑 → ((𝑆 D (𝐹 ∪ 𝐺)) ↾ ((int‘𝐽)‘(𝐴 ∪ 𝐵))) = (𝑆 D (𝐹 ∪ 𝐺))) |
| 37 | 4, 29, 36 | 3eqtr3d 2785 | 1 ⊢ (𝜑 → ((𝑆 D 𝐹) ∪ (𝑆 D 𝐺)) = (𝑆 D (𝐹 ∪ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3949 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 ↾ cres 5687 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ↾t crest 17465 TopOpenctopn 17466 ℂfldccnfld 21364 intcnt 23025 D cdv 25898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fi 9451 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-rest 17467 df-topn 17468 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-cnp 23236 df-xms 24330 df-ms 24331 df-limc 25901 df-dv 25902 |
| This theorem is referenced by: redvmptabs 42390 |
| Copyright terms: Public domain | W3C validator |