Step | Hyp | Ref
| Expression |
1 | | partfun 6715 |
. . 3
⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝑦 ∣ 𝑦 < 0}, -1, 1)) = ((𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -1) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 1)) |
2 | | reelprrecn 11244 |
. . . . . . 7
⊢ ℝ
∈ {ℝ, ℂ} |
3 | 2 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ℝ ∈ {ℝ, ℂ}) |
4 | | inss1 4244 |
. . . . . . . . 9
⊢ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ⊆ 𝐷 |
5 | | redvabs.d |
. . . . . . . . . . 11
⊢ 𝐷 = (ℝ ∖
{0}) |
6 | | difss 4145 |
. . . . . . . . . . 11
⊢ (ℝ
∖ {0}) ⊆ ℝ |
7 | 5, 6 | eqsstri 4029 |
. . . . . . . . . 10
⊢ 𝐷 ⊆
ℝ |
8 | | ax-resscn 11209 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
9 | 7, 8 | sstri 4004 |
. . . . . . . . 9
⊢ 𝐷 ⊆
ℂ |
10 | 4, 9 | sstri 4004 |
. . . . . . . 8
⊢ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ⊆ ℂ |
11 | 10 | sseli 3990 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) → 𝑥 ∈ ℂ) |
12 | 11 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0})) → 𝑥 ∈ ℂ) |
13 | | 1cnd 11253 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0})) → 1 ∈
ℂ) |
14 | 8 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ ℝ ⊆ ℂ) |
15 | 14 | sselda 3994 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ) → 𝑥
∈ ℂ) |
16 | | 1red 11259 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ) → 1 ∈ ℝ) |
17 | 3 | dvmptid 26009 |
. . . . . . 7
⊢ (⊤
→ (ℝ D (𝑥 ∈
ℝ ↦ 𝑥)) =
(𝑥 ∈ ℝ ↦
1)) |
18 | | ssinss1 4253 |
. . . . . . . 8
⊢ (𝐷 ⊆ ℝ → (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ⊆ ℝ) |
19 | 7, 18 | mp1i 13 |
. . . . . . 7
⊢ (⊤
→ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ⊆ ℝ) |
20 | | eqid 2734 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
21 | 20 | tgioo2 24838 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
22 | 5 | eleq2i 2830 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐷 ↔ 𝑥 ∈ (ℝ ∖
{0})) |
23 | | eldifsn 4790 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (ℝ ∖ {0})
↔ (𝑥 ∈ ℝ
∧ 𝑥 ≠
0)) |
24 | 22, 23 | bitri 275 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0)) |
25 | | vex 3481 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
26 | | breq1 5150 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑦 < 0 ↔ 𝑥 < 0)) |
27 | 25, 26 | elab 3680 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {𝑦 ∣ 𝑦 < 0} ↔ 𝑥 < 0) |
28 | 24, 27 | anbi12i 628 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑥 ∈ {𝑦 ∣ 𝑦 < 0}) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0)) |
29 | | lt0ne0 11726 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < 0) → 𝑥 ≠ 0) |
30 | 29 | expcom 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 < 0 → (𝑥 ∈ ℝ → 𝑥 ≠ 0)) |
31 | 30 | pm4.71d 561 |
. . . . . . . . . . . . . 14
⊢ (𝑥 < 0 → (𝑥 ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))) |
32 | 31 | bicomd 223 |
. . . . . . . . . . . . 13
⊢ (𝑥 < 0 → ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ↔ 𝑥 ∈
ℝ)) |
33 | 32 | pm5.32ri 575 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0)) |
34 | 28, 33 | bitri 275 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑥 ∈ {𝑦 ∣ 𝑦 < 0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0)) |
35 | | elin 3978 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↔ (𝑥 ∈ 𝐷 ∧ 𝑥 ∈ {𝑦 ∣ 𝑦 < 0})) |
36 | | 0xr 11305 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ* |
37 | | elioomnf 13480 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℝ* → (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))) |
38 | 36, 37 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-∞(,)0) ↔
(𝑥 ∈ ℝ ∧
𝑥 < 0)) |
39 | 34, 35, 38 | 3bitr4i 303 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↔ 𝑥 ∈ (-∞(,)0)) |
40 | 39 | eqriv 2731 |
. . . . . . . . 9
⊢ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) = (-∞(,)0) |
41 | | iooretop 24801 |
. . . . . . . . 9
⊢
(-∞(,)0) ∈ (topGen‘ran (,)) |
42 | 40, 41 | eqeltri 2834 |
. . . . . . . 8
⊢ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∈ (topGen‘ran
(,)) |
43 | 42 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∈ (topGen‘ran
(,))) |
44 | 3, 15, 16, 17, 19, 21, 20, 43 | dvmptres 26015 |
. . . . . 6
⊢ (⊤
→ (ℝ D (𝑥 ∈
(𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ 1)) |
45 | 3, 12, 13, 44 | dvmptneg 26018 |
. . . . 5
⊢ (⊤
→ (ℝ D (𝑥 ∈
(𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -1)) |
46 | 45 | mptru 1543 |
. . . 4
⊢ (ℝ
D (𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -1) |
47 | 7 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 𝐷 ⊆
ℝ) |
48 | 47 | ssdifssd 4156 |
. . . . . 6
⊢ (⊤
→ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ⊆ ℝ) |
49 | 27 | notbii 320 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ {𝑦 ∣ 𝑦 < 0} ↔ ¬ 𝑥 < 0) |
50 | 24, 49 | anbi12i 628 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐷 ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝑦 < 0}) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0)) |
51 | | anass 468 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0))) |
52 | | elre0re 42273 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → 0 ∈
ℝ) |
53 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ) |
54 | 52, 53 | lttrid 11396 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → (0 <
𝑥 ↔ ¬ (0 = 𝑥 ∨ 𝑥 < 0))) |
55 | | ioran 985 |
. . . . . . . . . . . . . 14
⊢ (¬ (0
= 𝑥 ∨ 𝑥 < 0) ↔ (¬ 0 = 𝑥 ∧ ¬ 𝑥 < 0)) |
56 | | nesym 2994 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ≠ 0 ↔ ¬ 0 = 𝑥) |
57 | 56 | bicomi 224 |
. . . . . . . . . . . . . 14
⊢ (¬ 0
= 𝑥 ↔ 𝑥 ≠ 0) |
58 | 55, 57 | bianbi 627 |
. . . . . . . . . . . . 13
⊢ (¬ (0
= 𝑥 ∨ 𝑥 < 0) ↔ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0)) |
59 | 54, 58 | bitr2di 288 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → ((𝑥 ≠ 0 ∧ ¬ 𝑥 < 0) ↔ 0 < 𝑥)) |
60 | 59 | pm5.32i 574 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0)) ↔ (𝑥 ∈ ℝ ∧ 0 <
𝑥)) |
61 | 50, 51, 60 | 3bitri 297 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐷 ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝑦 < 0}) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) |
62 | | eldif 3972 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↔ (𝑥 ∈ 𝐷 ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝑦 < 0})) |
63 | | repos 13482 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0(,)+∞) ↔
(𝑥 ∈ ℝ ∧ 0
< 𝑥)) |
64 | 61, 62, 63 | 3bitr4i 303 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↔ 𝑥 ∈ (0(,)+∞)) |
65 | 64 | eqriv 2731 |
. . . . . . . 8
⊢ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) = (0(,)+∞) |
66 | | iooretop 24801 |
. . . . . . . 8
⊢
(0(,)+∞) ∈ (topGen‘ran (,)) |
67 | 65, 66 | eqeltri 2834 |
. . . . . . 7
⊢ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ∈ (topGen‘ran
(,)) |
68 | 67 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ∈ (topGen‘ran
(,))) |
69 | 3, 15, 16, 17, 48, 21, 20, 68 | dvmptres 26015 |
. . . . 5
⊢ (⊤
→ (ℝ D (𝑥 ∈
(𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 1)) |
70 | 69 | mptru 1543 |
. . . 4
⊢ (ℝ
D (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 1) |
71 | 46, 70 | uneq12i 4175 |
. . 3
⊢ ((ℝ
D (𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥))) = ((𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -1) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 1)) |
72 | 12 | negcld 11604 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0})) → -𝑥 ∈ ℂ) |
73 | 72 | fmpttd 7134 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥):(𝐷 ∩ {𝑦 ∣ 𝑦 < 0})⟶ℂ) |
74 | | ssdifss 4149 |
. . . . . . . . . 10
⊢ (𝐷 ⊆ ℝ → (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ⊆ ℝ) |
75 | 7, 74 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ⊆ ℝ |
76 | 75, 8 | sstri 4004 |
. . . . . . . 8
⊢ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ⊆ ℂ |
77 | 76 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ⊆ ℂ) |
78 | 77 | sselda 3994 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0})) → 𝑥 ∈ ℂ) |
79 | 78 | fmpttd 7134 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥):(𝐷 ∖ {𝑦 ∣ 𝑦 < 0})⟶ℂ) |
80 | | inindif 4380 |
. . . . . 6
⊢ ((𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∩ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0})) = ∅ |
81 | 80 | a1i 11 |
. . . . 5
⊢ (⊤
→ ((𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∩ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0})) = ∅) |
82 | | retop 24797 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) ∈ Top |
83 | | isopn3i 23105 |
. . . . . . . . 9
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∈ (topGen‘ran (,)))
→ ((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦 ∣ 𝑦 < 0})) = (𝐷 ∩ {𝑦 ∣ 𝑦 < 0})) |
84 | 82, 42, 83 | mp2an 692 |
. . . . . . . 8
⊢
((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦 ∣ 𝑦 < 0})) = (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) |
85 | | isopn3i 23105 |
. . . . . . . . 9
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ∈ (topGen‘ran (,)))
→ ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦 ∣ 𝑦 < 0})) = (𝐷 ∖ {𝑦 ∣ 𝑦 < 0})) |
86 | 82, 67, 85 | mp2an 692 |
. . . . . . . 8
⊢
((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦 ∣ 𝑦 < 0})) = (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) |
87 | 84, 86 | uneq12i 4175 |
. . . . . . 7
⊢
(((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦 ∣ 𝑦 < 0})) ∪
((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦 ∣ 𝑦 < 0}))) = ((𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∪ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0})) |
88 | | unopn 22924 |
. . . . . . . . 9
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∈ (topGen‘ran (,)) ∧
(𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ∈ (topGen‘ran (,)))
→ ((𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∪ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0})) ∈ (topGen‘ran
(,))) |
89 | 82, 42, 67, 88 | mp3an 1460 |
. . . . . . . 8
⊢ ((𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∪ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0})) ∈ (topGen‘ran
(,)) |
90 | | isopn3i 23105 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ Top ∧ ((𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∪ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0})) ∈ (topGen‘ran (,)))
→ ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∪ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}))) = ((𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∪ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}))) |
91 | 82, 89, 90 | mp2an 692 |
. . . . . . 7
⊢
((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∪ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}))) = ((𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ∪ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0})) |
92 | 87, 91 | eqtr4i 2765 |
. . . . . 6
⊢
(((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦 ∣ 𝑦 < 0})) ∪
((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦 ∣ 𝑦 < 0}))) = ((int‘(topGen‘ran
(,)))‘((𝐷 ∩
{𝑦 ∣ 𝑦 < 0}) ∪ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}))) |
93 | 92 | a1i 11 |
. . . . 5
⊢ (⊤
→ (((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦 ∣ 𝑦 < 0})) ∪
((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦 ∣ 𝑦 < 0}))) = ((int‘(topGen‘ran
(,)))‘((𝐷 ∩
{𝑦 ∣ 𝑦 < 0}) ∪ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0})))) |
94 | 21, 20, 14, 73, 79, 19, 48, 81, 93 | dvun 42367 |
. . . 4
⊢ (⊤
→ ((ℝ D (𝑥
∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥))) = (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥)))) |
95 | 94 | mptru 1543 |
. . 3
⊢ ((ℝ
D (𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥))) = (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥))) |
96 | 1, 71, 95 | 3eqtr2ri 2769 |
. 2
⊢ (ℝ
D ((𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥))) = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝑦 ∣ 𝑦 < 0}, -1, 1)) |
97 | | partfun 6715 |
. . . 4
⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝑦 ∣ 𝑦 < 0}, -𝑥, 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥)) |
98 | | elioore 13413 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (-∞(,)0) →
𝑥 ∈
ℝ) |
99 | | 0red 11261 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-∞(,)0) → 0
∈ ℝ) |
100 | 38 | simprbi 496 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-∞(,)0) →
𝑥 < 0) |
101 | 98, 99, 100 | ltled 11406 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (-∞(,)0) →
𝑥 ≤ 0) |
102 | 98, 101 | absnidd 15448 |
. . . . . . . . 9
⊢ (𝑥 ∈ (-∞(,)0) →
(abs‘𝑥) = -𝑥) |
103 | 102 | eqcomd 2740 |
. . . . . . . 8
⊢ (𝑥 ∈ (-∞(,)0) →
-𝑥 = (abs‘𝑥)) |
104 | 103, 40 | eleq2s 2856 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) → -𝑥 = (abs‘𝑥)) |
105 | 35, 104 | sylbir 235 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑥 ∈ {𝑦 ∣ 𝑦 < 0}) → -𝑥 = (abs‘𝑥)) |
106 | | rpabsid 42334 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (abs‘𝑥) =
𝑥) |
107 | 106 | eqcomd 2740 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ 𝑥 = (abs‘𝑥)) |
108 | | ioorp 13461 |
. . . . . . . . 9
⊢
(0(,)+∞) = ℝ+ |
109 | 107, 108 | eleq2s 2856 |
. . . . . . . 8
⊢ (𝑥 ∈ (0(,)+∞) →
𝑥 = (abs‘𝑥)) |
110 | 109, 65 | eleq2s 2856 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) → 𝑥 = (abs‘𝑥)) |
111 | 62, 110 | sylbir 235 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐷 ∧ ¬ 𝑥 ∈ {𝑦 ∣ 𝑦 < 0}) → 𝑥 = (abs‘𝑥)) |
112 | 105, 111 | ifeqda 4566 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → if(𝑥 ∈ {𝑦 ∣ 𝑦 < 0}, -𝑥, 𝑥) = (abs‘𝑥)) |
113 | 112 | mpteq2ia 5250 |
. . . 4
⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝑦 ∣ 𝑦 < 0}, -𝑥, 𝑥)) = (𝑥 ∈ 𝐷 ↦ (abs‘𝑥)) |
114 | 97, 113 | eqtr3i 2764 |
. . 3
⊢ ((𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ 𝐷 ↦ (abs‘𝑥)) |
115 | 114 | oveq2i 7441 |
. 2
⊢ (ℝ
D ((𝑥 ∈ (𝐷 ∩ {𝑦 ∣ 𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦 ∣ 𝑦 < 0}) ↦ 𝑥))) = (ℝ D (𝑥 ∈ 𝐷 ↦ (abs‘𝑥))) |
116 | | eqid 2734 |
. . . 4
⊢ 1 =
1 |
117 | 27, 116 | ifbieq2i 4555 |
. . 3
⊢ if(𝑥 ∈ {𝑦 ∣ 𝑦 < 0}, -1, 1) = if(𝑥 < 0, -1, 1) |
118 | 117 | mpteq2i 5252 |
. 2
⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝑦 ∣ 𝑦 < 0}, -1, 1)) = (𝑥 ∈ 𝐷 ↦ if(𝑥 < 0, -1, 1)) |
119 | 96, 115, 118 | 3eqtr3i 2770 |
1
⊢ (ℝ
D (𝑥 ∈ 𝐷 ↦ (abs‘𝑥))) = (𝑥 ∈ 𝐷 ↦ if(𝑥 < 0, -1, 1)) |