Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  redvmptabs Structured version   Visualization version   GIF version

Theorem redvmptabs 42390
Description: The derivative of the absolute value, for real numbers. (Contributed by SN, 30-Sep-2025.)
Hypothesis
Ref Expression
redvabs.d 𝐷 = (ℝ ∖ {0})
Assertion
Ref Expression
redvmptabs (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
Distinct variable group:   𝑥,𝐷

Proof of Theorem redvmptabs
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 partfun 6715 . . 3 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1)) = ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1))
2 reelprrecn 11247 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
32a1i 11 . . . . . 6 (⊤ → ℝ ∈ {ℝ, ℂ})
4 inss1 4237 . . . . . . . . 9 (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ 𝐷
5 redvabs.d . . . . . . . . . . 11 𝐷 = (ℝ ∖ {0})
6 difss 4136 . . . . . . . . . . 11 (ℝ ∖ {0}) ⊆ ℝ
75, 6eqsstri 4030 . . . . . . . . . 10 𝐷 ⊆ ℝ
8 ax-resscn 11212 . . . . . . . . . 10 ℝ ⊆ ℂ
97, 8sstri 3993 . . . . . . . . 9 𝐷 ⊆ ℂ
104, 9sstri 3993 . . . . . . . 8 (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ ℂ
1110sseli 3979 . . . . . . 7 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) → 𝑥 ∈ ℂ)
1211adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0})) → 𝑥 ∈ ℂ)
13 1cnd 11256 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0})) → 1 ∈ ℂ)
148a1i 11 . . . . . . . 8 (⊤ → ℝ ⊆ ℂ)
1514sselda 3983 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
16 1red 11262 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
173dvmptid 25995 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
18 ssinss1 4246 . . . . . . . 8 (𝐷 ⊆ ℝ → (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ ℝ)
197, 18mp1i 13 . . . . . . 7 (⊤ → (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ ℝ)
20 tgioo4 24826 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
21 eqid 2737 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
225eleq2i 2833 . . . . . . . . . . . . . 14 (𝑥𝐷𝑥 ∈ (ℝ ∖ {0}))
23 eldifsn 4786 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ ∖ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
2422, 23bitri 275 . . . . . . . . . . . . 13 (𝑥𝐷 ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
25 vex 3484 . . . . . . . . . . . . . 14 𝑥 ∈ V
26 breq1 5146 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦 < 0 ↔ 𝑥 < 0))
2725, 26elab 3679 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑦𝑦 < 0} ↔ 𝑥 < 0)
2824, 27anbi12i 628 . . . . . . . . . . . 12 ((𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0))
29 lt0ne0 11729 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑥 < 0) → 𝑥 ≠ 0)
3029expcom 413 . . . . . . . . . . . . . . 15 (𝑥 < 0 → (𝑥 ∈ ℝ → 𝑥 ≠ 0))
3130pm4.71d 561 . . . . . . . . . . . . . 14 (𝑥 < 0 → (𝑥 ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0)))
3231bicomd 223 . . . . . . . . . . . . 13 (𝑥 < 0 → ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ↔ 𝑥 ∈ ℝ))
3332pm5.32ri 575 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
3428, 33bitri 275 . . . . . . . . . . 11 ((𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
35 elin 3967 . . . . . . . . . . 11 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↔ (𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}))
36 0xr 11308 . . . . . . . . . . . 12 0 ∈ ℝ*
37 elioomnf 13484 . . . . . . . . . . . 12 (0 ∈ ℝ* → (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0)))
3836, 37ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
3934, 35, 383bitr4i 303 . . . . . . . . . 10 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↔ 𝑥 ∈ (-∞(,)0))
4039eqriv 2734 . . . . . . . . 9 (𝐷 ∩ {𝑦𝑦 < 0}) = (-∞(,)0)
41 iooretop 24786 . . . . . . . . 9 (-∞(,)0) ∈ (topGen‘ran (,))
4240, 41eqeltri 2837 . . . . . . . 8 (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))
4342a1i 11 . . . . . . 7 (⊤ → (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,)))
443, 15, 16, 17, 19, 20, 21, 43dvmptres 26001 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ 1))
453, 12, 13, 44dvmptneg 26004 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1))
4645mptru 1547 . . . 4 (ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1)
477a1i 11 . . . . . . 7 (⊤ → 𝐷 ⊆ ℝ)
4847ssdifssd 4147 . . . . . 6 (⊤ → (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℝ)
4927notbii 320 . . . . . . . . . . . 12 𝑥 ∈ {𝑦𝑦 < 0} ↔ ¬ 𝑥 < 0)
5024, 49anbi12i 628 . . . . . . . . . . 11 ((𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0))
51 anass 468 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0)))
52 elre0re 42295 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 0 ∈ ℝ)
53 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
5452, 53lttrid 11399 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ ¬ (0 = 𝑥𝑥 < 0)))
55 ioran 986 . . . . . . . . . . . . . 14 (¬ (0 = 𝑥𝑥 < 0) ↔ (¬ 0 = 𝑥 ∧ ¬ 𝑥 < 0))
56 nesym 2997 . . . . . . . . . . . . . . 15 (𝑥 ≠ 0 ↔ ¬ 0 = 𝑥)
5756bicomi 224 . . . . . . . . . . . . . 14 (¬ 0 = 𝑥𝑥 ≠ 0)
5855, 57bianbi 627 . . . . . . . . . . . . 13 (¬ (0 = 𝑥𝑥 < 0) ↔ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0))
5954, 58bitr2di 288 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 ≠ 0 ∧ ¬ 𝑥 < 0) ↔ 0 < 𝑥))
6059pm5.32i 574 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6150, 51, 603bitri 297 . . . . . . . . . 10 ((𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
62 eldif 3961 . . . . . . . . . 10 (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↔ (𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}))
63 repos 13486 . . . . . . . . . 10 (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6461, 62, 633bitr4i 303 . . . . . . . . 9 (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↔ 𝑥 ∈ (0(,)+∞))
6564eqriv 2734 . . . . . . . 8 (𝐷 ∖ {𝑦𝑦 < 0}) = (0(,)+∞)
66 iooretop 24786 . . . . . . . 8 (0(,)+∞) ∈ (topGen‘ran (,))
6765, 66eqeltri 2837 . . . . . . 7 (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))
6867a1i 11 . . . . . 6 (⊤ → (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,)))
693, 15, 16, 17, 48, 20, 21, 68dvmptres 26001 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1))
7069mptru 1547 . . . 4 (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1)
7146, 70uneq12i 4166 . . 3 ((ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1))
7212negcld 11607 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0})) → -𝑥 ∈ ℂ)
7372fmpttd 7135 . . . . 5 (⊤ → (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥):(𝐷 ∩ {𝑦𝑦 < 0})⟶ℂ)
74 ssdifss 4140 . . . . . . . . . 10 (𝐷 ⊆ ℝ → (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℝ)
757, 74ax-mp 5 . . . . . . . . 9 (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℝ
7675, 8sstri 3993 . . . . . . . 8 (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℂ
7776a1i 11 . . . . . . 7 (⊤ → (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℂ)
7877sselda 3983 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0})) → 𝑥 ∈ ℂ)
7978fmpttd 7135 . . . . 5 (⊤ → (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥):(𝐷 ∖ {𝑦𝑦 < 0})⟶ℂ)
80 inindif 4375 . . . . . 6 ((𝐷 ∩ {𝑦𝑦 < 0}) ∩ (𝐷 ∖ {𝑦𝑦 < 0})) = ∅
8180a1i 11 . . . . 5 (⊤ → ((𝐷 ∩ {𝑦𝑦 < 0}) ∩ (𝐷 ∖ {𝑦𝑦 < 0})) = ∅)
82 retop 24782 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
83 isopn3i 23090 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) = (𝐷 ∩ {𝑦𝑦 < 0}))
8482, 42, 83mp2an 692 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) = (𝐷 ∩ {𝑦𝑦 < 0})
85 isopn3i 23090 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0})) = (𝐷 ∖ {𝑦𝑦 < 0}))
8682, 67, 85mp2an 692 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0})) = (𝐷 ∖ {𝑦𝑦 < 0})
8784, 86uneq12i 4166 . . . . . . 7 (((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) ∪ ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0}))) = ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))
88 unopn 22909 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,)) ∧ (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))) → ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})) ∈ (topGen‘ran (,)))
8982, 42, 67, 88mp3an 1463 . . . . . . . 8 ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})) ∈ (topGen‘ran (,))
90 isopn3i 23090 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))) = ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})))
9182, 89, 90mp2an 692 . . . . . . 7 ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))) = ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))
9287, 91eqtr4i 2768 . . . . . 6 (((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) ∪ ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0}))) = ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})))
9392a1i 11 . . . . 5 (⊤ → (((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) ∪ ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0}))) = ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))))
9420, 21, 14, 73, 79, 19, 48, 81, 93dvun 42389 . . . 4 (⊤ → ((ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))))
9594mptru 1547 . . 3 ((ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)))
961, 71, 953eqtr2ri 2772 . 2 (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1))
97 partfun 6715 . . . 4 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -𝑥, 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))
98 elioore 13417 . . . . . . . . . 10 (𝑥 ∈ (-∞(,)0) → 𝑥 ∈ ℝ)
99 0red 11264 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,)0) → 0 ∈ ℝ)
10038simprbi 496 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,)0) → 𝑥 < 0)
10198, 99, 100ltled 11409 . . . . . . . . . 10 (𝑥 ∈ (-∞(,)0) → 𝑥 ≤ 0)
10298, 101absnidd 15452 . . . . . . . . 9 (𝑥 ∈ (-∞(,)0) → (abs‘𝑥) = -𝑥)
103102eqcomd 2743 . . . . . . . 8 (𝑥 ∈ (-∞(,)0) → -𝑥 = (abs‘𝑥))
104103, 40eleq2s 2859 . . . . . . 7 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) → -𝑥 = (abs‘𝑥))
10535, 104sylbir 235 . . . . . 6 ((𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}) → -𝑥 = (abs‘𝑥))
106 rpabsid 42356 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (abs‘𝑥) = 𝑥)
107106eqcomd 2743 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 = (abs‘𝑥))
108 ioorp 13465 . . . . . . . . 9 (0(,)+∞) = ℝ+
109107, 108eleq2s 2859 . . . . . . . 8 (𝑥 ∈ (0(,)+∞) → 𝑥 = (abs‘𝑥))
110109, 65eleq2s 2859 . . . . . . 7 (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) → 𝑥 = (abs‘𝑥))
11162, 110sylbir 235 . . . . . 6 ((𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}) → 𝑥 = (abs‘𝑥))
112105, 111ifeqda 4562 . . . . 5 (𝑥𝐷 → if(𝑥 ∈ {𝑦𝑦 < 0}, -𝑥, 𝑥) = (abs‘𝑥))
113112mpteq2ia 5245 . . . 4 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -𝑥, 𝑥)) = (𝑥𝐷 ↦ (abs‘𝑥))
11497, 113eqtr3i 2767 . . 3 ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥𝐷 ↦ (abs‘𝑥))
115114oveq2i 7442 . 2 (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (ℝ D (𝑥𝐷 ↦ (abs‘𝑥)))
116 eqid 2737 . . . 4 1 = 1
11727, 116ifbieq2i 4551 . . 3 if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1) = if(𝑥 < 0, -1, 1)
118117mpteq2i 5247 . 2 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1)) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
11996, 115, 1183eqtr3i 2773 1 (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 848   = wceq 1540  wtru 1541  wcel 2108  {cab 2714  wne 2940  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  ifcif 4525  {csn 4626  {cpr 4628   class class class wbr 5143  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295  -cneg 11493  +crp 13034  (,)cioo 13387  abscabs 15273  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  Topctop 22899  intcnt 23025   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  readvrec  42392
  Copyright terms: Public domain W3C validator