Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  redvmptabs Structured version   Visualization version   GIF version

Theorem redvmptabs 42341
Description: The derivative of the absolute value, for real numbers. (Contributed by SN, 30-Sep-2025.)
Hypothesis
Ref Expression
redvabs.d 𝐷 = (ℝ ∖ {0})
Assertion
Ref Expression
redvmptabs (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
Distinct variable group:   𝑥,𝐷

Proof of Theorem redvmptabs
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 partfun 6647 . . 3 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1)) = ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1))
2 reelprrecn 11136 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
32a1i 11 . . . . . 6 (⊤ → ℝ ∈ {ℝ, ℂ})
4 inss1 4196 . . . . . . . . 9 (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ 𝐷
5 redvabs.d . . . . . . . . . . 11 𝐷 = (ℝ ∖ {0})
6 difss 4095 . . . . . . . . . . 11 (ℝ ∖ {0}) ⊆ ℝ
75, 6eqsstri 3990 . . . . . . . . . 10 𝐷 ⊆ ℝ
8 ax-resscn 11101 . . . . . . . . . 10 ℝ ⊆ ℂ
97, 8sstri 3953 . . . . . . . . 9 𝐷 ⊆ ℂ
104, 9sstri 3953 . . . . . . . 8 (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ ℂ
1110sseli 3939 . . . . . . 7 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) → 𝑥 ∈ ℂ)
1211adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0})) → 𝑥 ∈ ℂ)
13 1cnd 11145 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0})) → 1 ∈ ℂ)
148a1i 11 . . . . . . . 8 (⊤ → ℝ ⊆ ℂ)
1514sselda 3943 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
16 1red 11151 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
173dvmptid 25894 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
18 ssinss1 4205 . . . . . . . 8 (𝐷 ⊆ ℝ → (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ ℝ)
197, 18mp1i 13 . . . . . . 7 (⊤ → (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ ℝ)
20 tgioo4 24726 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
21 eqid 2729 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
225eleq2i 2820 . . . . . . . . . . . . . 14 (𝑥𝐷𝑥 ∈ (ℝ ∖ {0}))
23 eldifsn 4746 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ ∖ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
2422, 23bitri 275 . . . . . . . . . . . . 13 (𝑥𝐷 ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
25 vex 3448 . . . . . . . . . . . . . 14 𝑥 ∈ V
26 breq1 5105 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦 < 0 ↔ 𝑥 < 0))
2725, 26elab 3643 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑦𝑦 < 0} ↔ 𝑥 < 0)
2824, 27anbi12i 628 . . . . . . . . . . . 12 ((𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0))
29 lt0ne0 11620 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑥 < 0) → 𝑥 ≠ 0)
3029expcom 413 . . . . . . . . . . . . . . 15 (𝑥 < 0 → (𝑥 ∈ ℝ → 𝑥 ≠ 0))
3130pm4.71d 561 . . . . . . . . . . . . . 14 (𝑥 < 0 → (𝑥 ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0)))
3231bicomd 223 . . . . . . . . . . . . 13 (𝑥 < 0 → ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ↔ 𝑥 ∈ ℝ))
3332pm5.32ri 575 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
3428, 33bitri 275 . . . . . . . . . . 11 ((𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
35 elin 3927 . . . . . . . . . . 11 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↔ (𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}))
36 0xr 11197 . . . . . . . . . . . 12 0 ∈ ℝ*
37 elioomnf 13381 . . . . . . . . . . . 12 (0 ∈ ℝ* → (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0)))
3836, 37ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
3934, 35, 383bitr4i 303 . . . . . . . . . 10 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↔ 𝑥 ∈ (-∞(,)0))
4039eqriv 2726 . . . . . . . . 9 (𝐷 ∩ {𝑦𝑦 < 0}) = (-∞(,)0)
41 iooretop 24686 . . . . . . . . 9 (-∞(,)0) ∈ (topGen‘ran (,))
4240, 41eqeltri 2824 . . . . . . . 8 (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))
4342a1i 11 . . . . . . 7 (⊤ → (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,)))
443, 15, 16, 17, 19, 20, 21, 43dvmptres 25900 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ 1))
453, 12, 13, 44dvmptneg 25903 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1))
4645mptru 1547 . . . 4 (ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1)
477a1i 11 . . . . . . 7 (⊤ → 𝐷 ⊆ ℝ)
4847ssdifssd 4106 . . . . . 6 (⊤ → (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℝ)
4927notbii 320 . . . . . . . . . . . 12 𝑥 ∈ {𝑦𝑦 < 0} ↔ ¬ 𝑥 < 0)
5024, 49anbi12i 628 . . . . . . . . . . 11 ((𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0))
51 anass 468 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0)))
52 elre0re 42235 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 0 ∈ ℝ)
53 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
5452, 53lttrid 11288 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ ¬ (0 = 𝑥𝑥 < 0)))
55 ioran 985 . . . . . . . . . . . . . 14 (¬ (0 = 𝑥𝑥 < 0) ↔ (¬ 0 = 𝑥 ∧ ¬ 𝑥 < 0))
56 nesym 2981 . . . . . . . . . . . . . . 15 (𝑥 ≠ 0 ↔ ¬ 0 = 𝑥)
5756bicomi 224 . . . . . . . . . . . . . 14 (¬ 0 = 𝑥𝑥 ≠ 0)
5855, 57bianbi 627 . . . . . . . . . . . . 13 (¬ (0 = 𝑥𝑥 < 0) ↔ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0))
5954, 58bitr2di 288 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 ≠ 0 ∧ ¬ 𝑥 < 0) ↔ 0 < 𝑥))
6059pm5.32i 574 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6150, 51, 603bitri 297 . . . . . . . . . 10 ((𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
62 eldif 3921 . . . . . . . . . 10 (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↔ (𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}))
63 repos 13383 . . . . . . . . . 10 (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6461, 62, 633bitr4i 303 . . . . . . . . 9 (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↔ 𝑥 ∈ (0(,)+∞))
6564eqriv 2726 . . . . . . . 8 (𝐷 ∖ {𝑦𝑦 < 0}) = (0(,)+∞)
66 iooretop 24686 . . . . . . . 8 (0(,)+∞) ∈ (topGen‘ran (,))
6765, 66eqeltri 2824 . . . . . . 7 (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))
6867a1i 11 . . . . . 6 (⊤ → (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,)))
693, 15, 16, 17, 48, 20, 21, 68dvmptres 25900 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1))
7069mptru 1547 . . . 4 (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1)
7146, 70uneq12i 4125 . . 3 ((ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1))
7212negcld 11496 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0})) → -𝑥 ∈ ℂ)
7372fmpttd 7069 . . . . 5 (⊤ → (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥):(𝐷 ∩ {𝑦𝑦 < 0})⟶ℂ)
74 ssdifss 4099 . . . . . . . . . 10 (𝐷 ⊆ ℝ → (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℝ)
757, 74ax-mp 5 . . . . . . . . 9 (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℝ
7675, 8sstri 3953 . . . . . . . 8 (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℂ
7776a1i 11 . . . . . . 7 (⊤ → (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℂ)
7877sselda 3943 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0})) → 𝑥 ∈ ℂ)
7978fmpttd 7069 . . . . 5 (⊤ → (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥):(𝐷 ∖ {𝑦𝑦 < 0})⟶ℂ)
80 inindif 4334 . . . . . 6 ((𝐷 ∩ {𝑦𝑦 < 0}) ∩ (𝐷 ∖ {𝑦𝑦 < 0})) = ∅
8180a1i 11 . . . . 5 (⊤ → ((𝐷 ∩ {𝑦𝑦 < 0}) ∩ (𝐷 ∖ {𝑦𝑦 < 0})) = ∅)
82 retop 24682 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
83 isopn3i 23002 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) = (𝐷 ∩ {𝑦𝑦 < 0}))
8482, 42, 83mp2an 692 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) = (𝐷 ∩ {𝑦𝑦 < 0})
85 isopn3i 23002 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0})) = (𝐷 ∖ {𝑦𝑦 < 0}))
8682, 67, 85mp2an 692 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0})) = (𝐷 ∖ {𝑦𝑦 < 0})
8784, 86uneq12i 4125 . . . . . . 7 (((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) ∪ ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0}))) = ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))
88 unopn 22823 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,)) ∧ (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))) → ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})) ∈ (topGen‘ran (,)))
8982, 42, 67, 88mp3an 1463 . . . . . . . 8 ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})) ∈ (topGen‘ran (,))
90 isopn3i 23002 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))) = ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})))
9182, 89, 90mp2an 692 . . . . . . 7 ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))) = ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))
9287, 91eqtr4i 2755 . . . . . 6 (((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) ∪ ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0}))) = ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})))
9392a1i 11 . . . . 5 (⊤ → (((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) ∪ ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0}))) = ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))))
9420, 21, 14, 73, 79, 19, 48, 81, 93dvun 42340 . . . 4 (⊤ → ((ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))))
9594mptru 1547 . . 3 ((ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)))
961, 71, 953eqtr2ri 2759 . 2 (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1))
97 partfun 6647 . . . 4 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -𝑥, 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))
98 elioore 13312 . . . . . . . . . 10 (𝑥 ∈ (-∞(,)0) → 𝑥 ∈ ℝ)
99 0red 11153 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,)0) → 0 ∈ ℝ)
10038simprbi 496 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,)0) → 𝑥 < 0)
10198, 99, 100ltled 11298 . . . . . . . . . 10 (𝑥 ∈ (-∞(,)0) → 𝑥 ≤ 0)
10298, 101absnidd 15356 . . . . . . . . 9 (𝑥 ∈ (-∞(,)0) → (abs‘𝑥) = -𝑥)
103102eqcomd 2735 . . . . . . . 8 (𝑥 ∈ (-∞(,)0) → -𝑥 = (abs‘𝑥))
104103, 40eleq2s 2846 . . . . . . 7 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) → -𝑥 = (abs‘𝑥))
10535, 104sylbir 235 . . . . . 6 ((𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}) → -𝑥 = (abs‘𝑥))
106 rpabsid 42302 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (abs‘𝑥) = 𝑥)
107106eqcomd 2735 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 = (abs‘𝑥))
108 ioorp 13362 . . . . . . . . 9 (0(,)+∞) = ℝ+
109107, 108eleq2s 2846 . . . . . . . 8 (𝑥 ∈ (0(,)+∞) → 𝑥 = (abs‘𝑥))
110109, 65eleq2s 2846 . . . . . . 7 (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) → 𝑥 = (abs‘𝑥))
11162, 110sylbir 235 . . . . . 6 ((𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}) → 𝑥 = (abs‘𝑥))
112105, 111ifeqda 4521 . . . . 5 (𝑥𝐷 → if(𝑥 ∈ {𝑦𝑦 < 0}, -𝑥, 𝑥) = (abs‘𝑥))
113112mpteq2ia 5197 . . . 4 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -𝑥, 𝑥)) = (𝑥𝐷 ↦ (abs‘𝑥))
11497, 113eqtr3i 2754 . . 3 ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥𝐷 ↦ (abs‘𝑥))
115114oveq2i 7380 . 2 (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (ℝ D (𝑥𝐷 ↦ (abs‘𝑥)))
116 eqid 2729 . . . 4 1 = 1
11727, 116ifbieq2i 4510 . . 3 if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1) = if(𝑥 < 0, -1, 1)
118117mpteq2i 5198 . 2 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1)) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
11996, 115, 1183eqtr3i 2760 1 (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2109  {cab 2707  wne 2925  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  ifcif 4484  {csn 4585  {cpr 4587   class class class wbr 5102  cmpt 5183  ran crn 5632  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   < clt 11184  -cneg 11382  +crp 12927  (,)cioo 13282  abscabs 15176  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21296  Topctop 22813  intcnt 22937   D cdv 25797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801
This theorem is referenced by:  readvrec  42343
  Copyright terms: Public domain W3C validator