Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  redvmptabs Structured version   Visualization version   GIF version

Theorem redvmptabs 42355
Description: The derivative of the absolute value, for real numbers. (Contributed by SN, 30-Sep-2025.)
Hypothesis
Ref Expression
redvabs.d 𝐷 = (ℝ ∖ {0})
Assertion
Ref Expression
redvmptabs (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
Distinct variable group:   𝑥,𝐷

Proof of Theorem redvmptabs
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 partfun 6668 . . 3 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1)) = ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1))
2 reelprrecn 11167 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
32a1i 11 . . . . . 6 (⊤ → ℝ ∈ {ℝ, ℂ})
4 inss1 4203 . . . . . . . . 9 (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ 𝐷
5 redvabs.d . . . . . . . . . . 11 𝐷 = (ℝ ∖ {0})
6 difss 4102 . . . . . . . . . . 11 (ℝ ∖ {0}) ⊆ ℝ
75, 6eqsstri 3996 . . . . . . . . . 10 𝐷 ⊆ ℝ
8 ax-resscn 11132 . . . . . . . . . 10 ℝ ⊆ ℂ
97, 8sstri 3959 . . . . . . . . 9 𝐷 ⊆ ℂ
104, 9sstri 3959 . . . . . . . 8 (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ ℂ
1110sseli 3945 . . . . . . 7 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) → 𝑥 ∈ ℂ)
1211adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0})) → 𝑥 ∈ ℂ)
13 1cnd 11176 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0})) → 1 ∈ ℂ)
148a1i 11 . . . . . . . 8 (⊤ → ℝ ⊆ ℂ)
1514sselda 3949 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
16 1red 11182 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
173dvmptid 25868 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
18 ssinss1 4212 . . . . . . . 8 (𝐷 ⊆ ℝ → (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ ℝ)
197, 18mp1i 13 . . . . . . 7 (⊤ → (𝐷 ∩ {𝑦𝑦 < 0}) ⊆ ℝ)
20 tgioo4 24700 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
21 eqid 2730 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
225eleq2i 2821 . . . . . . . . . . . . . 14 (𝑥𝐷𝑥 ∈ (ℝ ∖ {0}))
23 eldifsn 4753 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ ∖ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
2422, 23bitri 275 . . . . . . . . . . . . 13 (𝑥𝐷 ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
25 vex 3454 . . . . . . . . . . . . . 14 𝑥 ∈ V
26 breq1 5113 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦 < 0 ↔ 𝑥 < 0))
2725, 26elab 3649 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑦𝑦 < 0} ↔ 𝑥 < 0)
2824, 27anbi12i 628 . . . . . . . . . . . 12 ((𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0))
29 lt0ne0 11651 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑥 < 0) → 𝑥 ≠ 0)
3029expcom 413 . . . . . . . . . . . . . . 15 (𝑥 < 0 → (𝑥 ∈ ℝ → 𝑥 ≠ 0))
3130pm4.71d 561 . . . . . . . . . . . . . 14 (𝑥 < 0 → (𝑥 ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0)))
3231bicomd 223 . . . . . . . . . . . . 13 (𝑥 < 0 → ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ↔ 𝑥 ∈ ℝ))
3332pm5.32ri 575 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ 𝑥 < 0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
3428, 33bitri 275 . . . . . . . . . . 11 ((𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
35 elin 3933 . . . . . . . . . . 11 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↔ (𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}))
36 0xr 11228 . . . . . . . . . . . 12 0 ∈ ℝ*
37 elioomnf 13412 . . . . . . . . . . . 12 (0 ∈ ℝ* → (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0)))
3836, 37ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,)0) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 0))
3934, 35, 383bitr4i 303 . . . . . . . . . 10 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↔ 𝑥 ∈ (-∞(,)0))
4039eqriv 2727 . . . . . . . . 9 (𝐷 ∩ {𝑦𝑦 < 0}) = (-∞(,)0)
41 iooretop 24660 . . . . . . . . 9 (-∞(,)0) ∈ (topGen‘ran (,))
4240, 41eqeltri 2825 . . . . . . . 8 (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))
4342a1i 11 . . . . . . 7 (⊤ → (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,)))
443, 15, 16, 17, 19, 20, 21, 43dvmptres 25874 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ 1))
453, 12, 13, 44dvmptneg 25877 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1))
4645mptru 1547 . . . 4 (ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) = (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1)
477a1i 11 . . . . . . 7 (⊤ → 𝐷 ⊆ ℝ)
4847ssdifssd 4113 . . . . . 6 (⊤ → (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℝ)
4927notbii 320 . . . . . . . . . . . 12 𝑥 ∈ {𝑦𝑦 < 0} ↔ ¬ 𝑥 < 0)
5024, 49anbi12i 628 . . . . . . . . . . 11 ((𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}) ↔ ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0))
51 anass 468 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) ∧ ¬ 𝑥 < 0) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0)))
52 elre0re 42249 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 0 ∈ ℝ)
53 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
5452, 53lttrid 11319 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ ¬ (0 = 𝑥𝑥 < 0)))
55 ioran 985 . . . . . . . . . . . . . 14 (¬ (0 = 𝑥𝑥 < 0) ↔ (¬ 0 = 𝑥 ∧ ¬ 𝑥 < 0))
56 nesym 2982 . . . . . . . . . . . . . . 15 (𝑥 ≠ 0 ↔ ¬ 0 = 𝑥)
5756bicomi 224 . . . . . . . . . . . . . 14 (¬ 0 = 𝑥𝑥 ≠ 0)
5855, 57bianbi 627 . . . . . . . . . . . . 13 (¬ (0 = 𝑥𝑥 < 0) ↔ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0))
5954, 58bitr2di 288 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 ≠ 0 ∧ ¬ 𝑥 < 0) ↔ 0 < 𝑥))
6059pm5.32i 574 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ (𝑥 ≠ 0 ∧ ¬ 𝑥 < 0)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6150, 51, 603bitri 297 . . . . . . . . . 10 ((𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
62 eldif 3927 . . . . . . . . . 10 (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↔ (𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}))
63 repos 13414 . . . . . . . . . 10 (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6461, 62, 633bitr4i 303 . . . . . . . . 9 (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↔ 𝑥 ∈ (0(,)+∞))
6564eqriv 2727 . . . . . . . 8 (𝐷 ∖ {𝑦𝑦 < 0}) = (0(,)+∞)
66 iooretop 24660 . . . . . . . 8 (0(,)+∞) ∈ (topGen‘ran (,))
6765, 66eqeltri 2825 . . . . . . 7 (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))
6867a1i 11 . . . . . 6 (⊤ → (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,)))
693, 15, 16, 17, 48, 20, 21, 68dvmptres 25874 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1))
7069mptru 1547 . . . 4 (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1)
7146, 70uneq12i 4132 . . 3 ((ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -1) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 1))
7212negcld 11527 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0})) → -𝑥 ∈ ℂ)
7372fmpttd 7090 . . . . 5 (⊤ → (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥):(𝐷 ∩ {𝑦𝑦 < 0})⟶ℂ)
74 ssdifss 4106 . . . . . . . . . 10 (𝐷 ⊆ ℝ → (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℝ)
757, 74ax-mp 5 . . . . . . . . 9 (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℝ
7675, 8sstri 3959 . . . . . . . 8 (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℂ
7776a1i 11 . . . . . . 7 (⊤ → (𝐷 ∖ {𝑦𝑦 < 0}) ⊆ ℂ)
7877sselda 3949 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0})) → 𝑥 ∈ ℂ)
7978fmpttd 7090 . . . . 5 (⊤ → (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥):(𝐷 ∖ {𝑦𝑦 < 0})⟶ℂ)
80 inindif 4341 . . . . . 6 ((𝐷 ∩ {𝑦𝑦 < 0}) ∩ (𝐷 ∖ {𝑦𝑦 < 0})) = ∅
8180a1i 11 . . . . 5 (⊤ → ((𝐷 ∩ {𝑦𝑦 < 0}) ∩ (𝐷 ∖ {𝑦𝑦 < 0})) = ∅)
82 retop 24656 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
83 isopn3i 22976 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) = (𝐷 ∩ {𝑦𝑦 < 0}))
8482, 42, 83mp2an 692 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) = (𝐷 ∩ {𝑦𝑦 < 0})
85 isopn3i 22976 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0})) = (𝐷 ∖ {𝑦𝑦 < 0}))
8682, 67, 85mp2an 692 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0})) = (𝐷 ∖ {𝑦𝑦 < 0})
8784, 86uneq12i 4132 . . . . . . 7 (((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) ∪ ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0}))) = ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))
88 unopn 22797 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐷 ∩ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,)) ∧ (𝐷 ∖ {𝑦𝑦 < 0}) ∈ (topGen‘ran (,))) → ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})) ∈ (topGen‘ran (,)))
8982, 42, 67, 88mp3an 1463 . . . . . . . 8 ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})) ∈ (topGen‘ran (,))
90 isopn3i 22976 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))) = ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})))
9182, 89, 90mp2an 692 . . . . . . 7 ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))) = ((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))
9287, 91eqtr4i 2756 . . . . . 6 (((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) ∪ ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0}))) = ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0})))
9392a1i 11 . . . . 5 (⊤ → (((int‘(topGen‘ran (,)))‘(𝐷 ∩ {𝑦𝑦 < 0})) ∪ ((int‘(topGen‘ran (,)))‘(𝐷 ∖ {𝑦𝑦 < 0}))) = ((int‘(topGen‘ran (,)))‘((𝐷 ∩ {𝑦𝑦 < 0}) ∪ (𝐷 ∖ {𝑦𝑦 < 0}))))
9420, 21, 14, 73, 79, 19, 48, 81, 93dvun 42354 . . . 4 (⊤ → ((ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))))
9594mptru 1547 . . 3 ((ℝ D (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥)) ∪ (ℝ D (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)))
961, 71, 953eqtr2ri 2760 . 2 (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1))
97 partfun 6668 . . . 4 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -𝑥, 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))
98 elioore 13343 . . . . . . . . . 10 (𝑥 ∈ (-∞(,)0) → 𝑥 ∈ ℝ)
99 0red 11184 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,)0) → 0 ∈ ℝ)
10038simprbi 496 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,)0) → 𝑥 < 0)
10198, 99, 100ltled 11329 . . . . . . . . . 10 (𝑥 ∈ (-∞(,)0) → 𝑥 ≤ 0)
10298, 101absnidd 15387 . . . . . . . . 9 (𝑥 ∈ (-∞(,)0) → (abs‘𝑥) = -𝑥)
103102eqcomd 2736 . . . . . . . 8 (𝑥 ∈ (-∞(,)0) → -𝑥 = (abs‘𝑥))
104103, 40eleq2s 2847 . . . . . . 7 (𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) → -𝑥 = (abs‘𝑥))
10535, 104sylbir 235 . . . . . 6 ((𝑥𝐷𝑥 ∈ {𝑦𝑦 < 0}) → -𝑥 = (abs‘𝑥))
106 rpabsid 42316 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (abs‘𝑥) = 𝑥)
107106eqcomd 2736 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 = (abs‘𝑥))
108 ioorp 13393 . . . . . . . . 9 (0(,)+∞) = ℝ+
109107, 108eleq2s 2847 . . . . . . . 8 (𝑥 ∈ (0(,)+∞) → 𝑥 = (abs‘𝑥))
110109, 65eleq2s 2847 . . . . . . 7 (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) → 𝑥 = (abs‘𝑥))
11162, 110sylbir 235 . . . . . 6 ((𝑥𝐷 ∧ ¬ 𝑥 ∈ {𝑦𝑦 < 0}) → 𝑥 = (abs‘𝑥))
112105, 111ifeqda 4528 . . . . 5 (𝑥𝐷 → if(𝑥 ∈ {𝑦𝑦 < 0}, -𝑥, 𝑥) = (abs‘𝑥))
113112mpteq2ia 5205 . . . 4 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -𝑥, 𝑥)) = (𝑥𝐷 ↦ (abs‘𝑥))
11497, 113eqtr3i 2755 . . 3 ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥)) = (𝑥𝐷 ↦ (abs‘𝑥))
115114oveq2i 7401 . 2 (ℝ D ((𝑥 ∈ (𝐷 ∩ {𝑦𝑦 < 0}) ↦ -𝑥) ∪ (𝑥 ∈ (𝐷 ∖ {𝑦𝑦 < 0}) ↦ 𝑥))) = (ℝ D (𝑥𝐷 ↦ (abs‘𝑥)))
116 eqid 2730 . . . 4 1 = 1
11727, 116ifbieq2i 4517 . . 3 if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1) = if(𝑥 < 0, -1, 1)
118117mpteq2i 5206 . 2 (𝑥𝐷 ↦ if(𝑥 ∈ {𝑦𝑦 < 0}, -1, 1)) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
11996, 115, 1183eqtr3i 2761 1 (ℝ D (𝑥𝐷 ↦ (abs‘𝑥))) = (𝑥𝐷 ↦ if(𝑥 < 0, -1, 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2109  {cab 2708  wne 2926  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  ifcif 4491  {csn 4592  {cpr 4594   class class class wbr 5110  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  -cneg 11413  +crp 12958  (,)cioo 13313  abscabs 15207  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  Topctop 22787  intcnt 22911   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  readvrec  42357
  Copyright terms: Public domain W3C validator