Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem2 Structured version   Visualization version   GIF version

Theorem stirlinglem2 43960
Description: 𝐴 maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem2.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
Assertion
Ref Expression
stirlinglem2 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)

Proof of Theorem stirlinglem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12341 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 14098 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3 nnrp 12842 . . . . 5 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℝ+)
41, 2, 33syl 18 . . . 4 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ+)
5 2rp 12836 . . . . . . . 8 2 ∈ ℝ+
65a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
7 nnrp 12842 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
86, 7rpmulcld 12889 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
98rpsqrtcld 15222 . . . . 5 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) ∈ ℝ+)
10 epr 16016 . . . . . . . 8 e ∈ ℝ+
1110a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → e ∈ ℝ+)
127, 11rpdivcld 12890 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / e) ∈ ℝ+)
13 nnz 12443 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1412, 13rpexpcld 14063 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) ∈ ℝ+)
159, 14rpmulcld 12889 . . . 4 (𝑁 ∈ ℕ → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ∈ ℝ+)
164, 15rpdivcld 12890 . . 3 (𝑁 ∈ ℕ → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
17 stirlinglem2.1 . . . . . 6 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
18 fveq2 6825 . . . . . . . 8 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
19 oveq2 7345 . . . . . . . . . 10 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
2019fveq2d 6829 . . . . . . . . 9 (𝑛 = 𝑘 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
21 oveq1 7344 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 / e) = (𝑘 / e))
22 id 22 . . . . . . . . . 10 (𝑛 = 𝑘𝑛 = 𝑘)
2321, 22oveq12d 7355 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
2420, 23oveq12d 7355 . . . . . . . 8 (𝑛 = 𝑘 → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
2518, 24oveq12d 7355 . . . . . . 7 (𝑛 = 𝑘 → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2625cbvmptv 5205 . . . . . 6 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2717, 26eqtri 2764 . . . . 5 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2827a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))))
29 simpr 485 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → 𝑘 = 𝑁)
3029fveq2d 6829 . . . . 5 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (!‘𝑘) = (!‘𝑁))
3129oveq2d 7353 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (2 · 𝑘) = (2 · 𝑁))
3231fveq2d 6829 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (√‘(2 · 𝑘)) = (√‘(2 · 𝑁)))
3329oveq1d 7352 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (𝑘 / e) = (𝑁 / e))
3433, 29oveq12d 7355 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((𝑘 / e)↑𝑘) = ((𝑁 / e)↑𝑁))
3532, 34oveq12d 7355 . . . . 5 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) = ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)))
3630, 35oveq12d 7355 . . . 4 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
37 simpl 483 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℕ)
38 simpr 485 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
3928, 36, 37, 38fvmptd 6938 . . 3 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
4016, 39mpdan 684 . 2 (𝑁 ∈ ℕ → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
4140, 16eqeltrd 2837 1 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cmpt 5175  cfv 6479  (class class class)co 7337   · cmul 10977   / cdiv 11733  cn 12074  2c2 12129  0cn0 12334  +crp 12831  cexp 13883  !cfa 14088  csqrt 15043  eceu 15871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-n0 12335  df-z 12421  df-uz 12684  df-q 12790  df-rp 12832  df-ico 13186  df-fz 13341  df-fzo 13484  df-fl 13613  df-seq 13823  df-exp 13884  df-fac 14089  df-bc 14118  df-hash 14146  df-shft 14877  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-ef 15876  df-e 15877
This theorem is referenced by:  stirlinglem4  43962  stirlinglem11  43969  stirlinglem12  43970  stirlinglem13  43971  stirlinglem14  43972
  Copyright terms: Public domain W3C validator