Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem2 Structured version   Visualization version   GIF version

Theorem stirlinglem2 46046
Description: 𝐴 maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem2.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
Assertion
Ref Expression
stirlinglem2 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)

Proof of Theorem stirlinglem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12425 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 14224 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3 nnrp 12939 . . . . 5 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℝ+)
41, 2, 33syl 18 . . . 4 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ+)
5 2rp 12932 . . . . . . . 8 2 ∈ ℝ+
65a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
7 nnrp 12939 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
86, 7rpmulcld 12987 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
98rpsqrtcld 15354 . . . . 5 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) ∈ ℝ+)
10 epr 16152 . . . . . . . 8 e ∈ ℝ+
1110a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → e ∈ ℝ+)
127, 11rpdivcld 12988 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / e) ∈ ℝ+)
13 nnz 12526 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1412, 13rpexpcld 14188 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) ∈ ℝ+)
159, 14rpmulcld 12987 . . . 4 (𝑁 ∈ ℕ → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ∈ ℝ+)
164, 15rpdivcld 12988 . . 3 (𝑁 ∈ ℕ → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
17 stirlinglem2.1 . . . . . 6 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
18 fveq2 6840 . . . . . . . 8 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
19 oveq2 7377 . . . . . . . . . 10 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
2019fveq2d 6844 . . . . . . . . 9 (𝑛 = 𝑘 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
21 oveq1 7376 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 / e) = (𝑘 / e))
22 id 22 . . . . . . . . . 10 (𝑛 = 𝑘𝑛 = 𝑘)
2321, 22oveq12d 7387 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
2420, 23oveq12d 7387 . . . . . . . 8 (𝑛 = 𝑘 → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
2518, 24oveq12d 7387 . . . . . . 7 (𝑛 = 𝑘 → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2625cbvmptv 5206 . . . . . 6 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2717, 26eqtri 2752 . . . . 5 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2827a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))))
29 simpr 484 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → 𝑘 = 𝑁)
3029fveq2d 6844 . . . . 5 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (!‘𝑘) = (!‘𝑁))
3129oveq2d 7385 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (2 · 𝑘) = (2 · 𝑁))
3231fveq2d 6844 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (√‘(2 · 𝑘)) = (√‘(2 · 𝑁)))
3329oveq1d 7384 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (𝑘 / e) = (𝑁 / e))
3433, 29oveq12d 7387 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((𝑘 / e)↑𝑘) = ((𝑁 / e)↑𝑁))
3532, 34oveq12d 7387 . . . . 5 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) = ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)))
3630, 35oveq12d 7387 . . . 4 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
37 simpl 482 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℕ)
38 simpr 484 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
3928, 36, 37, 38fvmptd 6957 . . 3 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
4016, 39mpdan 687 . 2 (𝑁 ∈ ℕ → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
4140, 16eqeltrd 2828 1 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5183  cfv 6499  (class class class)co 7369   · cmul 11049   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  +crp 12927  cexp 14002  !cfa 14214  csqrt 15175  eceu 16004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-e 16010
This theorem is referenced by:  stirlinglem4  46048  stirlinglem11  46055  stirlinglem12  46056  stirlinglem13  46057  stirlinglem14  46058
  Copyright terms: Public domain W3C validator