Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem2 Structured version   Visualization version   GIF version

Theorem stirlinglem2 41087
Description: 𝐴 maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem2.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
Assertion
Ref Expression
stirlinglem2 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)

Proof of Theorem stirlinglem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11627 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 13364 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3 nnrp 12126 . . . . 5 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℝ+)
41, 2, 33syl 18 . . . 4 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ+)
5 2rp 12118 . . . . . . . 8 2 ∈ ℝ+
65a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
7 nnrp 12126 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
86, 7rpmulcld 12173 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
98rpsqrtcld 14528 . . . . 5 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) ∈ ℝ+)
10 epr 15311 . . . . . . . 8 e ∈ ℝ+
1110a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → e ∈ ℝ+)
127, 11rpdivcld 12174 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / e) ∈ ℝ+)
13 nnz 11728 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1412, 13rpexpcld 13329 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) ∈ ℝ+)
159, 14rpmulcld 12173 . . . 4 (𝑁 ∈ ℕ → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ∈ ℝ+)
164, 15rpdivcld 12174 . . 3 (𝑁 ∈ ℕ → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
17 stirlinglem2.1 . . . . . 6 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
18 fveq2 6434 . . . . . . . 8 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
19 oveq2 6914 . . . . . . . . . 10 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
2019fveq2d 6438 . . . . . . . . 9 (𝑛 = 𝑘 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
21 oveq1 6913 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 / e) = (𝑘 / e))
22 id 22 . . . . . . . . . 10 (𝑛 = 𝑘𝑛 = 𝑘)
2321, 22oveq12d 6924 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
2420, 23oveq12d 6924 . . . . . . . 8 (𝑛 = 𝑘 → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
2518, 24oveq12d 6924 . . . . . . 7 (𝑛 = 𝑘 → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2625cbvmptv 4974 . . . . . 6 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2717, 26eqtri 2850 . . . . 5 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2827a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))))
29 simpr 479 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → 𝑘 = 𝑁)
3029fveq2d 6438 . . . . 5 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (!‘𝑘) = (!‘𝑁))
3129oveq2d 6922 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (2 · 𝑘) = (2 · 𝑁))
3231fveq2d 6438 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (√‘(2 · 𝑘)) = (√‘(2 · 𝑁)))
3329oveq1d 6921 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (𝑘 / e) = (𝑁 / e))
3433, 29oveq12d 6924 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((𝑘 / e)↑𝑘) = ((𝑁 / e)↑𝑁))
3532, 34oveq12d 6924 . . . . 5 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) = ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)))
3630, 35oveq12d 6924 . . . 4 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
37 simpl 476 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℕ)
38 simpr 479 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
3928, 36, 37, 38fvmptd 6536 . . 3 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
4016, 39mpdan 680 . 2 (𝑁 ∈ ℕ → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
4140, 16eqeltrd 2907 1 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  cmpt 4953  cfv 6124  (class class class)co 6906   · cmul 10258   / cdiv 11010  cn 11351  2c2 11407  0cn0 11619  +crp 12113  cexp 13155  !cfa 13354  csqrt 14351  eceu 15166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331  ax-addf 10332  ax-mulf 10333
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-pm 8126  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-sup 8618  df-inf 8619  df-oi 8685  df-card 9079  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-n0 11620  df-z 11706  df-uz 11970  df-q 12073  df-rp 12114  df-ico 12470  df-fz 12621  df-fzo 12762  df-fl 12889  df-seq 13097  df-exp 13156  df-fac 13355  df-bc 13384  df-hash 13412  df-shft 14185  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-limsup 14580  df-clim 14597  df-rlim 14598  df-sum 14795  df-ef 15171  df-e 15172
This theorem is referenced by:  stirlinglem4  41089  stirlinglem11  41096  stirlinglem12  41097  stirlinglem13  41098  stirlinglem14  41099
  Copyright terms: Public domain W3C validator