![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihjat1 | Structured version Visualization version GIF version |
Description: Subspace sum of a closed subspace and an atom. (pmapjat1 38630 analog.) (Contributed by NM, 1-Oct-2014.) |
Ref | Expression |
---|---|
dihjat1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihjat1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihjat1.v | ⊢ 𝑉 = (Base‘𝑈) |
dihjat1.p | ⊢ ⊕ = (LSSum‘𝑈) |
dihjat1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dihjat1.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihjat1.j | ⊢ ∨ = ((joinH‘𝐾)‘𝑊) |
dihjat1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihjat1.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
dihjat1.q | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
Ref | Expression |
---|---|
dihjat1 | ⊢ (𝜑 → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ⊕ (𝑁‘{𝑇}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4634 | . . . . . 6 ⊢ (𝑇 = (0g‘𝑈) → {𝑇} = {(0g‘𝑈)}) | |
2 | 1 | fveq2d 6885 | . . . . 5 ⊢ (𝑇 = (0g‘𝑈) → (𝑁‘{𝑇}) = (𝑁‘{(0g‘𝑈)})) |
3 | dihjat1.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dihjat1.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | dihjat1.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 3, 4, 5 | dvhlmod 39887 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
7 | eqid 2733 | . . . . . . 7 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
8 | dihjat1.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑈) | |
9 | 7, 8 | lspsn0 20596 | . . . . . 6 ⊢ (𝑈 ∈ LMod → (𝑁‘{(0g‘𝑈)}) = {(0g‘𝑈)}) |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁‘{(0g‘𝑈)}) = {(0g‘𝑈)}) |
11 | 2, 10 | sylan9eqr 2795 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 = (0g‘𝑈)) → (𝑁‘{𝑇}) = {(0g‘𝑈)}) |
12 | 11 | oveq2d 7412 | . . 3 ⊢ ((𝜑 ∧ 𝑇 = (0g‘𝑈)) → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ∨ {(0g‘𝑈)})) |
13 | dihjat1.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
14 | dihjat1.j | . . . . 5 ⊢ ∨ = ((joinH‘𝐾)‘𝑊) | |
15 | dihjat1.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) | |
16 | 3, 4, 7, 13, 14, 5, 15 | djh01 40189 | . . . 4 ⊢ (𝜑 → (𝑋 ∨ {(0g‘𝑈)}) = 𝑋) |
17 | 16 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑇 = (0g‘𝑈)) → (𝑋 ∨ {(0g‘𝑈)}) = 𝑋) |
18 | 11 | oveq2d 7412 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 = (0g‘𝑈)) → (𝑋 ⊕ (𝑁‘{𝑇})) = (𝑋 ⊕ {(0g‘𝑈)})) |
19 | eqid 2733 | . . . . . . . . 9 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
20 | 3, 4, 13, 19 | dihrnlss 40054 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ∈ (LSubSp‘𝑈)) |
21 | 5, 15, 20 | syl2anc 585 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (LSubSp‘𝑈)) |
22 | 19 | lsssubg 20545 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ (LSubSp‘𝑈)) → 𝑋 ∈ (SubGrp‘𝑈)) |
23 | 6, 21, 22 | syl2anc 585 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (SubGrp‘𝑈)) |
24 | dihjat1.p | . . . . . . 7 ⊢ ⊕ = (LSSum‘𝑈) | |
25 | 7, 24 | lsm01 19523 | . . . . . 6 ⊢ (𝑋 ∈ (SubGrp‘𝑈) → (𝑋 ⊕ {(0g‘𝑈)}) = 𝑋) |
26 | 23, 25 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑋 ⊕ {(0g‘𝑈)}) = 𝑋) |
27 | 26 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 = (0g‘𝑈)) → (𝑋 ⊕ {(0g‘𝑈)}) = 𝑋) |
28 | 18, 27 | eqtr2d 2774 | . . 3 ⊢ ((𝜑 ∧ 𝑇 = (0g‘𝑈)) → 𝑋 = (𝑋 ⊕ (𝑁‘{𝑇}))) |
29 | 12, 17, 28 | 3eqtrd 2777 | . 2 ⊢ ((𝜑 ∧ 𝑇 = (0g‘𝑈)) → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ⊕ (𝑁‘{𝑇}))) |
30 | dihjat1.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
31 | 5 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
32 | 15 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → 𝑋 ∈ ran 𝐼) |
33 | dihjat1.q | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
34 | 33 | anim1i 616 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) |
35 | eldifsn 4786 | . . . 4 ⊢ (𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) | |
36 | 34, 35 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → 𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
37 | 3, 4, 30, 24, 8, 13, 14, 31, 32, 7, 36 | dihjat1lem 40205 | . 2 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ⊕ (𝑁‘{𝑇}))) |
38 | 29, 37 | pm2.61dane 3030 | 1 ⊢ (𝜑 → (𝑋 ∨ (𝑁‘{𝑇})) = (𝑋 ⊕ (𝑁‘{𝑇}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∖ cdif 3943 {csn 4624 ran crn 5673 ‘cfv 6535 (class class class)co 7396 Basecbs 17131 0gc0g 17372 SubGrpcsubg 18985 LSSumclsm 19486 LModclmod 20448 LSubSpclss 20519 LSpanclspn 20559 HLchlt 38126 LHypclh 38761 DVecHcdvh 39855 DIsoHcdih 40005 joinHcdjh 40171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-riotaBAD 37729 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-iin 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-tpos 8198 df-undef 8245 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-3 12263 df-4 12264 df-5 12265 df-6 12266 df-n0 12460 df-z 12546 df-uz 12810 df-fz 13472 df-struct 17067 df-sets 17084 df-slot 17102 df-ndx 17114 df-base 17132 df-ress 17161 df-plusg 17197 df-mulr 17198 df-sca 17200 df-vsca 17201 df-0g 17374 df-proset 18235 df-poset 18253 df-plt 18270 df-lub 18286 df-glb 18287 df-join 18288 df-meet 18289 df-p0 18365 df-p1 18366 df-lat 18372 df-clat 18439 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-submnd 18659 df-grp 18809 df-minusg 18810 df-sbg 18811 df-subg 18988 df-cntz 19166 df-lsm 19488 df-cmn 19634 df-abl 19635 df-mgp 19971 df-ur 19988 df-ring 20040 df-oppr 20128 df-dvdsr 20149 df-unit 20150 df-invr 20180 df-dvr 20193 df-drng 20295 df-lmod 20450 df-lss 20520 df-lsp 20560 df-lvec 20691 df-lsatoms 37752 df-oposet 37952 df-ol 37954 df-oml 37955 df-covers 38042 df-ats 38043 df-atl 38074 df-cvlat 38098 df-hlat 38127 df-llines 38275 df-lplanes 38276 df-lvols 38277 df-lines 38278 df-psubsp 38280 df-pmap 38281 df-padd 38573 df-lhyp 38765 df-laut 38766 df-ldil 38881 df-ltrn 38882 df-trl 38936 df-tgrp 39520 df-tendo 39532 df-edring 39534 df-dveca 39780 df-disoa 39806 df-dvech 39856 df-dib 39916 df-dic 39950 df-dih 40006 df-doch 40125 df-djh 40172 |
This theorem is referenced by: dihsmsprn 40207 dihjat2 40208 lclkrlem2c 40286 lcfrlem23 40342 |
Copyright terms: Public domain | W3C validator |