Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndsxmet Structured version   Visualization version   GIF version

Theorem rrndsxmet 46287
Description: 𝐷 is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rrndsxmet.1 (𝜑𝑋 ∈ Fin)
rrndsxmet.2 𝐷 = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
Assertion
Ref Expression
rrndsxmet (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝑋)))
Distinct variable group:   𝑓,𝑋,𝑔,𝑘
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑘)   𝐷(𝑓,𝑔,𝑘)

Proof of Theorem rrndsxmet
StepHypRef Expression
1 rrndsxmet.1 . . 3 (𝜑𝑋 ∈ Fin)
2 rrndsxmet.2 . . 3 𝐷 = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
31, 2rrndsmet 46286 . 2 (𝜑𝐷 ∈ (Met‘(ℝ ↑m 𝑋)))
4 metxmet 24369 . 2 (𝐷 ∈ (Met‘(ℝ ↑m 𝑋)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝑋)))
53, 4syl 17 1 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6569  (class class class)co 7438  cmpo 7440  m cmap 8874  Fincfn 8993  cr 11161  cmin 11499  2c2 12328  cexp 14108  csqrt 15278  Σcsu 15728  ∞Metcxmet 21376  Metcmet 21377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240  ax-addf 11241  ax-mulf 11242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-om 7895  df-1st 8022  df-2nd 8023  df-supp 8194  df-tpos 8259  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-fsupp 9409  df-sup 9489  df-oi 9557  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-rp 13042  df-xadd 13162  df-ico 13399  df-fz 13554  df-fzo 13701  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-clim 15530  df-sum 15729  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-starv 17322  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-unif 17330  df-hom 17331  df-cco 17332  df-0g 17497  df-gsum 17498  df-prds 17503  df-pws 17505  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20596  df-drng 20757  df-field 20758  df-staf 20866  df-srng 20867  df-lmod 20886  df-lss 20957  df-sra 21199  df-rgmod 21200  df-xmet 21384  df-met 21385  df-cnfld 21392  df-refld 21650  df-dsmm 21779  df-frlm 21794  df-nm 24620  df-tng 24622  df-tcph 25228  df-rrx 25444
This theorem is referenced by:  ioorrnopnlem  46288
  Copyright terms: Public domain W3C validator