MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1 Structured version   Visualization version   GIF version

Theorem psr1 21753
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1.z 0 = (0g𝑅)
psr1.o 1 = (1r𝑅)
psr1.u 𝑈 = (1r𝑆)
Assertion
Ref Expression
psr1 (𝜑𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑅,𝑓,𝑥   𝑥,𝐷   𝜑,𝑥   𝑥,𝑉   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑆(𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psr1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psrring.i . . 3 (𝜑𝐼𝑉)
3 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
4 psr1.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psr1.z . . 3 0 = (0g𝑅)
6 psr1.o . . 3 1 = (1r𝑅)
7 eqid 2730 . . 3 (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
8 eqid 2730 . . 3 (Base‘𝑆) = (Base‘𝑆)
91, 2, 3, 4, 5, 6, 7, 8psr1cl 21743 . 2 (𝜑 → (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆))
102adantr 479 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝐼𝑉)
113adantr 479 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
12 eqid 2730 . . . . 5 (.r𝑆) = (.r𝑆)
13 simpr 483 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
141, 10, 11, 4, 5, 6, 7, 8, 12, 13psrlidm 21744 . . . 4 ((𝜑𝑦 ∈ (Base‘𝑆)) → ((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦)
151, 10, 11, 4, 5, 6, 7, 8, 12, 13psrridm 21745 . . . 4 ((𝜑𝑦 ∈ (Base‘𝑆)) → (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)
1614, 15jca 510 . . 3 ((𝜑𝑦 ∈ (Base‘𝑆)) → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦))
1716ralrimiva 3144 . 2 (𝜑 → ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦))
181, 2, 3psrring 21752 . . 3 (𝜑𝑆 ∈ Ring)
19 psr1.u . . . 4 𝑈 = (1r𝑆)
208, 12, 19isringid 20161 . . 3 (𝑆 ∈ Ring → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))))
2118, 20syl 17 . 2 (𝜑 → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))))
229, 17, 21mpbi2and 708 1 (𝜑𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  {crab 3430  ifcif 4529  {csn 4629  cmpt 5232   × cxp 5675  ccnv 5676  cima 5680  cfv 6544  (class class class)co 7413  m cmap 8824  Fincfn 8943  0cc0 11114  cn 12218  0cn0 12478  Basecbs 17150  .rcmulr 17204  0gc0g 17391  1rcur 20077  Ringcrg 20129   mPwSer cmps 21678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-pm 8827  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-sup 9441  df-oi 9509  df-card 9938  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-2 12281  df-3 12282  df-4 12283  df-5 12284  df-6 12285  df-7 12286  df-8 12287  df-9 12288  df-n0 12479  df-z 12565  df-dec 12684  df-uz 12829  df-fz 13491  df-fzo 13634  df-seq 13973  df-hash 14297  df-struct 17086  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-mulr 17217  df-sca 17219  df-vsca 17220  df-ip 17221  df-tset 17222  df-ple 17223  df-ds 17225  df-hom 17227  df-cco 17228  df-0g 17393  df-gsum 17394  df-prds 17399  df-pws 17401  df-mre 17536  df-mrc 17537  df-acs 17539  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18707  df-submnd 18708  df-grp 18860  df-minusg 18861  df-mulg 18989  df-ghm 19130  df-cntz 19224  df-cmn 19693  df-abl 19694  df-mgp 20031  df-rng 20049  df-ur 20078  df-ring 20131  df-psr 21683
This theorem is referenced by:  subrgpsr  21760  mplsubrg  21785  mpl1  21792
  Copyright terms: Public domain W3C validator