MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1 Structured version   Visualization version   GIF version

Theorem psr1 21887
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1.z 0 = (0g𝑅)
psr1.o 1 = (1r𝑅)
psr1.u 𝑈 = (1r𝑆)
Assertion
Ref Expression
psr1 (𝜑𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑅,𝑓,𝑥   𝑥,𝐷   𝜑,𝑥   𝑥,𝑉   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑆(𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psr1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psrring.i . . 3 (𝜑𝐼𝑉)
3 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
4 psr1.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psr1.z . . 3 0 = (0g𝑅)
6 psr1.o . . 3 1 = (1r𝑅)
7 eqid 2730 . . 3 (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
8 eqid 2730 . . 3 (Base‘𝑆) = (Base‘𝑆)
91, 2, 3, 4, 5, 6, 7, 8psr1cl 21877 . 2 (𝜑 → (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆))
102adantr 480 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝐼𝑉)
113adantr 480 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
12 eqid 2730 . . . . 5 (.r𝑆) = (.r𝑆)
13 simpr 484 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
141, 10, 11, 4, 5, 6, 7, 8, 12, 13psrlidm 21878 . . . 4 ((𝜑𝑦 ∈ (Base‘𝑆)) → ((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦)
151, 10, 11, 4, 5, 6, 7, 8, 12, 13psrridm 21879 . . . 4 ((𝜑𝑦 ∈ (Base‘𝑆)) → (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)
1614, 15jca 511 . . 3 ((𝜑𝑦 ∈ (Base‘𝑆)) → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦))
1716ralrimiva 3126 . 2 (𝜑 → ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦))
181, 2, 3psrring 21886 . . 3 (𝜑𝑆 ∈ Ring)
19 psr1.u . . . 4 𝑈 = (1r𝑆)
208, 12, 19isringid 20187 . . 3 (𝑆 ∈ Ring → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))))
2118, 20syl 17 . 2 (𝜑 → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))))
229, 17, 21mpbi2and 712 1 (𝜑𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  ifcif 4491  {csn 4592  cmpt 5191   × cxp 5639  ccnv 5640  cima 5644  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  0cc0 11075  cn 12193  0cn0 12449  Basecbs 17186  .rcmulr 17228  0gc0g 17409  1rcur 20097  Ringcrg 20149   mPwSer cmps 21820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-psr 21825
This theorem is referenced by:  subrgpsr  21894  psrascl  21895  mplsubrg  21921  mpl1  21928  psdmvr  22063  rhmpsr  42547
  Copyright terms: Public domain W3C validator