| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psr1 | Structured version Visualization version GIF version | ||
| Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| psrring.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrring.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrring.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| psr1.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psr1.z | ⊢ 0 = (0g‘𝑅) |
| psr1.o | ⊢ 1 = (1r‘𝑅) |
| psr1.u | ⊢ 𝑈 = (1r‘𝑆) |
| Ref | Expression |
|---|---|
| psr1 | ⊢ (𝜑 → 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | psrring.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 3 | psrring.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 4 | psr1.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 5 | psr1.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 6 | psr1.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 7 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) | |
| 8 | eqid 2733 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | psr1cl 21901 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆)) |
| 10 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → 𝐼 ∈ 𝑉) |
| 11 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring) |
| 12 | eqid 2733 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 13 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆)) | |
| 14 | 1, 10, 11, 4, 5, 6, 7, 8, 12, 13 | psrlidm 21902 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r‘𝑆)𝑦) = 𝑦) |
| 15 | 1, 10, 11, 4, 5, 6, 7, 8, 12, 13 | psrridm 21903 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦(.r‘𝑆)(𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦) |
| 16 | 14, 15 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) |
| 17 | 16 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝑆)(((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) |
| 18 | 1, 2, 3 | psrring 21910 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 19 | psr1.u | . . . 4 ⊢ 𝑈 = (1r‘𝑆) | |
| 20 | 8, 12, 19 | isringid 20193 | . . 3 ⊢ (𝑆 ∈ Ring → (((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))) |
| 21 | 18, 20 | syl 17 | . 2 ⊢ (𝜑 → (((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))) |
| 22 | 9, 17, 21 | mpbi2and 712 | 1 ⊢ (𝜑 → 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ifcif 4476 {csn 4577 ↦ cmpt 5176 × cxp 5619 ◡ccnv 5620 “ cima 5624 ‘cfv 6488 (class class class)co 7354 ↑m cmap 8758 Fincfn 8877 0cc0 11015 ℕcn 12134 ℕ0cn0 12390 Basecbs 17124 .rcmulr 17166 0gc0g 17347 1rcur 20103 Ringcrg 20155 mPwSer cmps 21845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-ofr 7619 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-0g 17349 df-gsum 17350 df-prds 17355 df-pws 17357 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-submnd 18696 df-grp 18853 df-minusg 18854 df-mulg 18985 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-psr 21850 |
| This theorem is referenced by: subrgpsr 21918 psrascl 21919 mplsubrg 21945 mpl1 21952 psdmvr 22087 mplvrpmrhm 33597 rhmpsr 42673 |
| Copyright terms: Public domain | W3C validator |