MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1 Structured version   Visualization version   GIF version

Theorem psr1 22009
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1.z 0 = (0g𝑅)
psr1.o 1 = (1r𝑅)
psr1.u 𝑈 = (1r𝑆)
Assertion
Ref Expression
psr1 (𝜑𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑅,𝑓,𝑥   𝑥,𝐷   𝜑,𝑥   𝑥,𝑉   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑆(𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psr1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psrring.i . . 3 (𝜑𝐼𝑉)
3 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
4 psr1.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psr1.z . . 3 0 = (0g𝑅)
6 psr1.o . . 3 1 = (1r𝑅)
7 eqid 2735 . . 3 (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
8 eqid 2735 . . 3 (Base‘𝑆) = (Base‘𝑆)
91, 2, 3, 4, 5, 6, 7, 8psr1cl 21999 . 2 (𝜑 → (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆))
102adantr 480 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝐼𝑉)
113adantr 480 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
12 eqid 2735 . . . . 5 (.r𝑆) = (.r𝑆)
13 simpr 484 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
141, 10, 11, 4, 5, 6, 7, 8, 12, 13psrlidm 22000 . . . 4 ((𝜑𝑦 ∈ (Base‘𝑆)) → ((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦)
151, 10, 11, 4, 5, 6, 7, 8, 12, 13psrridm 22001 . . . 4 ((𝜑𝑦 ∈ (Base‘𝑆)) → (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)
1614, 15jca 511 . . 3 ((𝜑𝑦 ∈ (Base‘𝑆)) → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦))
1716ralrimiva 3144 . 2 (𝜑 → ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦))
181, 2, 3psrring 22008 . . 3 (𝜑𝑆 ∈ Ring)
19 psr1.u . . . 4 𝑈 = (1r𝑆)
208, 12, 19isringid 20285 . . 3 (𝑆 ∈ Ring → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))))
2118, 20syl 17 . 2 (𝜑 → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))))
229, 17, 21mpbi2and 712 1 (𝜑𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  ifcif 4531  {csn 4631  cmpt 5231   × cxp 5687  ccnv 5688  cima 5692  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  0cc0 11153  cn 12264  0cn0 12524  Basecbs 17245  .rcmulr 17299  0gc0g 17486  1rcur 20199  Ringcrg 20251   mPwSer cmps 21942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-mulg 19099  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-psr 21947
This theorem is referenced by:  subrgpsr  22016  psrascl  22017  mplsubrg  22043  mpl1  22050  rhmpsr  42539
  Copyright terms: Public domain W3C validator