MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1 Structured version   Visualization version   GIF version

Theorem psr1 21911
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1.z 0 = (0g𝑅)
psr1.o 1 = (1r𝑅)
psr1.u 𝑈 = (1r𝑆)
Assertion
Ref Expression
psr1 (𝜑𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑅,𝑓,𝑥   𝑥,𝐷   𝜑,𝑥   𝑥,𝑉   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑆(𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psr1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psrring.i . . 3 (𝜑𝐼𝑉)
3 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
4 psr1.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psr1.z . . 3 0 = (0g𝑅)
6 psr1.o . . 3 1 = (1r𝑅)
7 eqid 2733 . . 3 (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
8 eqid 2733 . . 3 (Base‘𝑆) = (Base‘𝑆)
91, 2, 3, 4, 5, 6, 7, 8psr1cl 21901 . 2 (𝜑 → (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆))
102adantr 480 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝐼𝑉)
113adantr 480 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
12 eqid 2733 . . . . 5 (.r𝑆) = (.r𝑆)
13 simpr 484 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
141, 10, 11, 4, 5, 6, 7, 8, 12, 13psrlidm 21902 . . . 4 ((𝜑𝑦 ∈ (Base‘𝑆)) → ((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦)
151, 10, 11, 4, 5, 6, 7, 8, 12, 13psrridm 21903 . . . 4 ((𝜑𝑦 ∈ (Base‘𝑆)) → (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)
1614, 15jca 511 . . 3 ((𝜑𝑦 ∈ (Base‘𝑆)) → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦))
1716ralrimiva 3125 . 2 (𝜑 → ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦))
181, 2, 3psrring 21910 . . 3 (𝜑𝑆 ∈ Ring)
19 psr1.u . . . 4 𝑈 = (1r𝑆)
208, 12, 19isringid 20193 . . 3 (𝑆 ∈ Ring → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))))
2118, 20syl 17 . 2 (𝜑 → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))))
229, 17, 21mpbi2and 712 1 (𝜑𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  ifcif 4476  {csn 4577  cmpt 5176   × cxp 5619  ccnv 5620  cima 5624  cfv 6488  (class class class)co 7354  m cmap 8758  Fincfn 8877  0cc0 11015  cn 12134  0cn0 12390  Basecbs 17124  .rcmulr 17166  0gc0g 17347  1rcur 20103  Ringcrg 20155   mPwSer cmps 21845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-ofr 7619  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-sup 9335  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-hom 17189  df-cco 17190  df-0g 17349  df-gsum 17350  df-prds 17355  df-pws 17357  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-grp 18853  df-minusg 18854  df-mulg 18985  df-ghm 19129  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-psr 21850
This theorem is referenced by:  subrgpsr  21918  psrascl  21919  mplsubrg  21945  mpl1  21952  psdmvr  22087  mplvrpmrhm  33597  rhmpsr  42673
  Copyright terms: Public domain W3C validator