![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psr1 | Structured version Visualization version GIF version |
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
psrring.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrring.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrring.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
psr1.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psr1.z | ⊢ 0 = (0g‘𝑅) |
psr1.o | ⊢ 1 = (1r‘𝑅) |
psr1.u | ⊢ 𝑈 = (1r‘𝑆) |
Ref | Expression |
---|---|
psr1 | ⊢ (𝜑 → 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrring.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | psrring.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
3 | psrring.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
4 | psr1.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
5 | psr1.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
6 | psr1.o | . . 3 ⊢ 1 = (1r‘𝑅) | |
7 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) | |
8 | eqid 2730 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | psr1cl 21743 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆)) |
10 | 2 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → 𝐼 ∈ 𝑉) |
11 | 3 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring) |
12 | eqid 2730 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
13 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆)) | |
14 | 1, 10, 11, 4, 5, 6, 7, 8, 12, 13 | psrlidm 21744 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r‘𝑆)𝑦) = 𝑦) |
15 | 1, 10, 11, 4, 5, 6, 7, 8, 12, 13 | psrridm 21745 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑦(.r‘𝑆)(𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦) |
16 | 14, 15 | jca 510 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑆)) → (((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) |
17 | 16 | ralrimiva 3144 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝑆)(((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) |
18 | 1, 2, 3 | psrring 21752 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) |
19 | psr1.u | . . . 4 ⊢ 𝑈 = (1r‘𝑆) | |
20 | 8, 12, 19 | isringid 20161 | . . 3 ⊢ (𝑆 ∈ Ring → (((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))) |
21 | 18, 20 | syl 17 | . 2 ⊢ (𝜑 → (((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r‘𝑆)𝑦) = 𝑦 ∧ (𝑦(.r‘𝑆)(𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))) |
22 | 9, 17, 21 | mpbi2and 708 | 1 ⊢ (𝜑 → 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 {crab 3430 ifcif 4529 {csn 4629 ↦ cmpt 5232 × cxp 5675 ◡ccnv 5676 “ cima 5680 ‘cfv 6544 (class class class)co 7413 ↑m cmap 8824 Fincfn 8943 0cc0 11114 ℕcn 12218 ℕ0cn0 12478 Basecbs 17150 .rcmulr 17204 0gc0g 17391 1rcur 20077 Ringcrg 20129 mPwSer cmps 21678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-ofr 7675 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-sup 9441 df-oi 9509 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-fz 13491 df-fzo 13634 df-seq 13973 df-hash 14297 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-hom 17227 df-cco 17228 df-0g 17393 df-gsum 17394 df-prds 17399 df-pws 17401 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18707 df-submnd 18708 df-grp 18860 df-minusg 18861 df-mulg 18989 df-ghm 19130 df-cntz 19224 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-psr 21683 |
This theorem is referenced by: subrgpsr 21760 mplsubrg 21785 mpl1 21792 |
Copyright terms: Public domain | W3C validator |