Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > selberglem3 | Structured version Visualization version GIF version |
Description: Lemma for selberg 26287. Estimation of the left-hand side of logsqvma2 26282. (Contributed by Mario Carneiro, 23-May-2016.) |
Ref | Expression |
---|---|
selberglem3 | ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7196 | . . . . . . . . 9 ⊢ (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑))) | |
2 | 1 | oveq1d 7188 | . . . . . . . 8 ⊢ (𝑛 = (𝑑 · 𝑚) → ((log‘(𝑛 / 𝑑))↑2) = ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) |
3 | 2 | oveq2d 7189 | . . . . . . 7 ⊢ (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2))) |
4 | rpre 12483 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
5 | ssrab2 3970 | . . . . . . . . . . 11 ⊢ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ⊆ ℕ | |
6 | simprr 773 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) | |
7 | 5, 6 | sseldi 3876 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑑 ∈ ℕ) |
8 | mucl 25881 | . . . . . . . . . 10 ⊢ (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ) | |
9 | 7, 8 | syl 17 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (μ‘𝑑) ∈ ℤ) |
10 | 9 | zcnd 12172 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (μ‘𝑑) ∈ ℂ) |
11 | elfznn 13030 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ) | |
12 | 11 | nnrpd 12515 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+) |
13 | 12 | ad2antrl 728 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑛 ∈ ℝ+) |
14 | 7 | nnrpd 12515 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑑 ∈ ℝ+) |
15 | 13, 14 | rpdivcld 12534 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (𝑛 / 𝑑) ∈ ℝ+) |
16 | relogcl 25322 | . . . . . . . . . . 11 ⊢ ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℝ) | |
17 | 16 | recnd 10750 | . . . . . . . . . 10 ⊢ ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℂ) |
18 | 15, 17 | syl 17 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ) |
19 | 18 | sqcld 13603 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((log‘(𝑛 / 𝑑))↑2) ∈ ℂ) |
20 | 10, 19 | mulcld 10742 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) ∈ ℂ) |
21 | 3, 4, 20 | dvdsflsumcom 25928 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2))) |
22 | elfznn 13030 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℕ) | |
23 | 22 | 3ad2ant3 1136 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℕ) |
24 | 23 | nncnd 11735 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℂ) |
25 | elfznn 13030 | . . . . . . . . . . . . 13 ⊢ (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ) | |
26 | 25 | 3ad2ant2 1135 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℕ) |
27 | 26 | nncnd 11735 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℂ) |
28 | 26 | nnne0d 11769 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ≠ 0) |
29 | 24, 27, 28 | divcan3d 11502 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚) |
30 | 29 | fveq2d 6681 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚)) |
31 | 30 | oveq1d 7188 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘((𝑑 · 𝑚) / 𝑑))↑2) = ((log‘𝑚)↑2)) |
32 | 31 | oveq2d 7189 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘𝑚)↑2))) |
33 | 32 | 2sumeq2dv 15158 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2))) |
34 | 21, 33 | eqtrd 2774 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2))) |
35 | 34 | oveq1d 7188 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) = (Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥)) |
36 | 35 | oveq1d 7188 | . . 3 ⊢ (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥))) = ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) |
37 | 36 | mpteq2ia 5122 | . 2 ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) |
38 | eqid 2739 | . . 3 ⊢ ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑) = ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑) | |
39 | 38 | selberglem2 26285 | . 2 ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) |
40 | 37, 39 | eqeltri 2830 | 1 ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 {crab 3058 class class class wbr 5031 ↦ cmpt 5111 ‘cfv 6340 (class class class)co 7173 ℂcc 10616 1c1 10619 + caddc 10621 · cmul 10623 − cmin 10951 / cdiv 11378 ℕcn 11719 2c2 11774 ℤcz 12065 ℝ+crp 12475 ...cfz 12984 ⌊cfl 13254 ↑cexp 13524 𝑂(1)co1 14936 Σcsu 15138 ∥ cdvds 15702 logclog 25301 μcmu 25835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-inf2 9180 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 ax-pre-sup 10696 ax-addf 10697 ax-mulf 10698 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-iin 4885 df-disj 4997 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-se 5485 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-of 7428 df-om 7603 df-1st 7717 df-2nd 7718 df-supp 7860 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-2o 8135 df-oadd 8138 df-er 8323 df-map 8442 df-pm 8443 df-ixp 8511 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-fsupp 8910 df-fi 8951 df-sup 8982 df-inf 8983 df-oi 9050 df-dju 9406 df-card 9444 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-div 11379 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-7 11787 df-8 11788 df-9 11789 df-n0 11980 df-xnn0 12052 df-z 12066 df-dec 12183 df-uz 12328 df-q 12434 df-rp 12476 df-xneg 12593 df-xadd 12594 df-xmul 12595 df-ioo 12828 df-ioc 12829 df-ico 12830 df-icc 12831 df-fz 12985 df-fzo 13128 df-fl 13256 df-mod 13332 df-seq 13464 df-exp 13525 df-fac 13729 df-bc 13758 df-hash 13786 df-shft 14519 df-cj 14551 df-re 14552 df-im 14553 df-sqrt 14687 df-abs 14688 df-limsup 14921 df-clim 14938 df-rlim 14939 df-o1 14940 df-lo1 14941 df-sum 15139 df-ef 15516 df-e 15517 df-sin 15518 df-cos 15519 df-tan 15520 df-pi 15521 df-dvds 15703 df-gcd 15941 df-prm 16116 df-pc 16277 df-struct 16591 df-ndx 16592 df-slot 16593 df-base 16595 df-sets 16596 df-ress 16597 df-plusg 16684 df-mulr 16685 df-starv 16686 df-sca 16687 df-vsca 16688 df-ip 16689 df-tset 16690 df-ple 16691 df-ds 16693 df-unif 16694 df-hom 16695 df-cco 16696 df-rest 16802 df-topn 16803 df-0g 16821 df-gsum 16822 df-topgen 16823 df-pt 16824 df-prds 16827 df-xrs 16881 df-qtop 16886 df-imas 16887 df-xps 16889 df-mre 16963 df-mrc 16964 df-acs 16966 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-submnd 18076 df-mulg 18346 df-cntz 18568 df-cmn 19029 df-psmet 20212 df-xmet 20213 df-met 20214 df-bl 20215 df-mopn 20216 df-fbas 20217 df-fg 20218 df-cnfld 20221 df-top 21648 df-topon 21665 df-topsp 21687 df-bases 21700 df-cld 21773 df-ntr 21774 df-cls 21775 df-nei 21852 df-lp 21890 df-perf 21891 df-cn 21981 df-cnp 21982 df-haus 22069 df-cmp 22141 df-tx 22316 df-hmeo 22509 df-fil 22600 df-fm 22692 df-flim 22693 df-flf 22694 df-xms 23076 df-ms 23077 df-tms 23078 df-cncf 23633 df-limc 24621 df-dv 24622 df-ulm 25127 df-log 25303 df-cxp 25304 df-atan 25608 df-em 25733 df-mu 25841 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |