Step | Hyp | Ref
| Expression |
1 | | fvoveq1 7428 |
. . . . . . . . 9
β’ (π = (π Β· π) β (logβ(π / π)) = (logβ((π Β· π) / π))) |
2 | 1 | oveq1d 7420 |
. . . . . . . 8
β’ (π = (π Β· π) β ((logβ(π / π))β2) = ((logβ((π Β· π) / π))β2)) |
3 | 2 | oveq2d 7421 |
. . . . . . 7
β’ (π = (π Β· π) β ((ΞΌβπ) Β· ((logβ(π / π))β2)) = ((ΞΌβπ) Β· ((logβ((π Β· π) / π))β2))) |
4 | | rpre 12978 |
. . . . . . 7
β’ (π₯ β β+
β π₯ β
β) |
5 | | ssrab2 4076 |
. . . . . . . . . . 11
β’ {π¦ β β β£ π¦ β₯ π} β β |
6 | | simprr 771 |
. . . . . . . . . . 11
β’ ((π₯ β β+
β§ (π β
(1...(ββπ₯))
β§ π β {π¦ β β β£ π¦ β₯ π})) β π β {π¦ β β β£ π¦ β₯ π}) |
7 | 5, 6 | sselid 3979 |
. . . . . . . . . 10
β’ ((π₯ β β+
β§ (π β
(1...(ββπ₯))
β§ π β {π¦ β β β£ π¦ β₯ π})) β π β β) |
8 | | mucl 26634 |
. . . . . . . . . 10
β’ (π β β β
(ΞΌβπ) β
β€) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
β’ ((π₯ β β+
β§ (π β
(1...(ββπ₯))
β§ π β {π¦ β β β£ π¦ β₯ π})) β (ΞΌβπ) β β€) |
10 | 9 | zcnd 12663 |
. . . . . . . 8
β’ ((π₯ β β+
β§ (π β
(1...(ββπ₯))
β§ π β {π¦ β β β£ π¦ β₯ π})) β (ΞΌβπ) β β) |
11 | | elfznn 13526 |
. . . . . . . . . . . . 13
β’ (π β
(1...(ββπ₯))
β π β
β) |
12 | 11 | nnrpd 13010 |
. . . . . . . . . . . 12
β’ (π β
(1...(ββπ₯))
β π β
β+) |
13 | 12 | ad2antrl 726 |
. . . . . . . . . . 11
β’ ((π₯ β β+
β§ (π β
(1...(ββπ₯))
β§ π β {π¦ β β β£ π¦ β₯ π})) β π β β+) |
14 | 7 | nnrpd 13010 |
. . . . . . . . . . 11
β’ ((π₯ β β+
β§ (π β
(1...(ββπ₯))
β§ π β {π¦ β β β£ π¦ β₯ π})) β π β β+) |
15 | 13, 14 | rpdivcld 13029 |
. . . . . . . . . 10
β’ ((π₯ β β+
β§ (π β
(1...(ββπ₯))
β§ π β {π¦ β β β£ π¦ β₯ π})) β (π / π) β
β+) |
16 | | relogcl 26075 |
. . . . . . . . . . 11
β’ ((π / π) β β+ β
(logβ(π / π)) β
β) |
17 | 16 | recnd 11238 |
. . . . . . . . . 10
β’ ((π / π) β β+ β
(logβ(π / π)) β
β) |
18 | 15, 17 | syl 17 |
. . . . . . . . 9
β’ ((π₯ β β+
β§ (π β
(1...(ββπ₯))
β§ π β {π¦ β β β£ π¦ β₯ π})) β (logβ(π / π)) β β) |
19 | 18 | sqcld 14105 |
. . . . . . . 8
β’ ((π₯ β β+
β§ (π β
(1...(ββπ₯))
β§ π β {π¦ β β β£ π¦ β₯ π})) β ((logβ(π / π))β2) β β) |
20 | 10, 19 | mulcld 11230 |
. . . . . . 7
β’ ((π₯ β β+
β§ (π β
(1...(ββπ₯))
β§ π β {π¦ β β β£ π¦ β₯ π})) β ((ΞΌβπ) Β· ((logβ(π / π))β2)) β β) |
21 | 3, 4, 20 | dvdsflsumcom 26681 |
. . . . . 6
β’ (π₯ β β+
β Ξ£π β
(1...(ββπ₯))Ξ£π β {π¦ β β β£ π¦ β₯ π} ((ΞΌβπ) Β· ((logβ(π / π))β2)) = Ξ£π β (1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβ((π Β· π) / π))β2))) |
22 | | elfznn 13526 |
. . . . . . . . . . . . 13
β’ (π β
(1...(ββ(π₯ /
π))) β π β
β) |
23 | 22 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯))
β§ π β
(1...(ββ(π₯ /
π)))) β π β
β) |
24 | 23 | nncnd 12224 |
. . . . . . . . . . 11
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯))
β§ π β
(1...(ββ(π₯ /
π)))) β π β
β) |
25 | | elfznn 13526 |
. . . . . . . . . . . . 13
β’ (π β
(1...(ββπ₯))
β π β
β) |
26 | 25 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯))
β§ π β
(1...(ββ(π₯ /
π)))) β π β
β) |
27 | 26 | nncnd 12224 |
. . . . . . . . . . 11
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯))
β§ π β
(1...(ββ(π₯ /
π)))) β π β
β) |
28 | 26 | nnne0d 12258 |
. . . . . . . . . . 11
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯))
β§ π β
(1...(ββ(π₯ /
π)))) β π β 0) |
29 | 24, 27, 28 | divcan3d 11991 |
. . . . . . . . . 10
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯))
β§ π β
(1...(ββ(π₯ /
π)))) β ((π Β· π) / π) = π) |
30 | 29 | fveq2d 6892 |
. . . . . . . . 9
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯))
β§ π β
(1...(ββ(π₯ /
π)))) β
(logβ((π Β·
π) / π)) = (logβπ)) |
31 | 30 | oveq1d 7420 |
. . . . . . . 8
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯))
β§ π β
(1...(ββ(π₯ /
π)))) β
((logβ((π Β·
π) / π))β2) = ((logβπ)β2)) |
32 | 31 | oveq2d 7421 |
. . . . . . 7
β’ ((π₯ β β+
β§ π β
(1...(ββπ₯))
β§ π β
(1...(ββ(π₯ /
π)))) β
((ΞΌβπ) Β·
((logβ((π Β·
π) / π))β2)) = ((ΞΌβπ) Β· ((logβπ)β2))) |
33 | 32 | 2sumeq2dv 15647 |
. . . . . 6
β’ (π₯ β β+
β Ξ£π β
(1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβ((π Β· π) / π))β2)) = Ξ£π β (1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2))) |
34 | 21, 33 | eqtrd 2772 |
. . . . 5
β’ (π₯ β β+
β Ξ£π β
(1...(ββπ₯))Ξ£π β {π¦ β β β£ π¦ β₯ π} ((ΞΌβπ) Β· ((logβ(π / π))β2)) = Ξ£π β (1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2))) |
35 | 34 | oveq1d 7420 |
. . . 4
β’ (π₯ β β+
β (Ξ£π β
(1...(ββπ₯))Ξ£π β {π¦ β β β£ π¦ β₯ π} ((ΞΌβπ) Β· ((logβ(π / π))β2)) / π₯) = (Ξ£π β (1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯)) |
36 | 35 | oveq1d 7420 |
. . 3
β’ (π₯ β β+
β ((Ξ£π β
(1...(ββπ₯))Ξ£π β {π¦ β β β£ π¦ β₯ π} ((ΞΌβπ) Β· ((logβ(π / π))β2)) / π₯) β (2 Β· (logβπ₯))) = ((Ξ£π β
(1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) β (2 Β· (logβπ₯)))) |
37 | 36 | mpteq2ia 5250 |
. 2
β’ (π₯ β β+
β¦ ((Ξ£π β
(1...(ββπ₯))Ξ£π β {π¦ β β β£ π¦ β₯ π} ((ΞΌβπ) Β· ((logβ(π / π))β2)) / π₯) β (2 Β· (logβπ₯)))) = (π₯ β β+ β¦
((Ξ£π β
(1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) β (2 Β· (logβπ₯)))) |
38 | | eqid 2732 |
. . 3
β’
((((logβ(π₯ /
π))β2) + (2 β (2
Β· (logβ(π₯ /
π))))) / π) = ((((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) / π) |
39 | 38 | selberglem2 27038 |
. 2
β’ (π₯ β β+
β¦ ((Ξ£π β
(1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) β (2 Β· (logβπ₯)))) β
π(1) |
40 | 37, 39 | eqeltri 2829 |
1
β’ (π₯ β β+
β¦ ((Ξ£π β
(1...(ββπ₯))Ξ£π β {π¦ β β β£ π¦ β₯ π} ((ΞΌβπ) Β· ((logβ(π / π))β2)) / π₯) β (2 Β· (logβπ₯)))) β
π(1) |