| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > selberglem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for selberg 27511. Estimation of the left-hand side of logsqvma2 27506. (Contributed by Mario Carneiro, 23-May-2016.) |
| Ref | Expression |
|---|---|
| selberglem3 | ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7428 | . . . . . . . . 9 ⊢ (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑))) | |
| 2 | 1 | oveq1d 7420 | . . . . . . . 8 ⊢ (𝑛 = (𝑑 · 𝑚) → ((log‘(𝑛 / 𝑑))↑2) = ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) |
| 3 | 2 | oveq2d 7421 | . . . . . . 7 ⊢ (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2))) |
| 4 | rpre 13017 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
| 5 | ssrab2 4055 | . . . . . . . . . . 11 ⊢ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ⊆ ℕ | |
| 6 | simprr 772 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) | |
| 7 | 5, 6 | sselid 3956 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑑 ∈ ℕ) |
| 8 | mucl 27103 | . . . . . . . . . 10 ⊢ (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ) | |
| 9 | 7, 8 | syl 17 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (μ‘𝑑) ∈ ℤ) |
| 10 | 9 | zcnd 12698 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (μ‘𝑑) ∈ ℂ) |
| 11 | elfznn 13570 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ) | |
| 12 | 11 | nnrpd 13049 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+) |
| 13 | 12 | ad2antrl 728 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑛 ∈ ℝ+) |
| 14 | 7 | nnrpd 13049 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → 𝑑 ∈ ℝ+) |
| 15 | 13, 14 | rpdivcld 13068 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (𝑛 / 𝑑) ∈ ℝ+) |
| 16 | relogcl 26536 | . . . . . . . . . . 11 ⊢ ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℝ) | |
| 17 | 16 | recnd 11263 | . . . . . . . . . 10 ⊢ ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℂ) |
| 18 | 15, 17 | syl 17 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ) |
| 19 | 18 | sqcld 14162 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((log‘(𝑛 / 𝑑))↑2) ∈ ℂ) |
| 20 | 10, 19 | mulcld 11255 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) ∈ ℂ) |
| 21 | 3, 4, 20 | dvdsflsumcom 27150 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2))) |
| 22 | elfznn 13570 | . . . . . . . . . . . . 13 ⊢ (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℕ) | |
| 23 | 22 | 3ad2ant3 1135 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℕ) |
| 24 | 23 | nncnd 12256 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℂ) |
| 25 | elfznn 13570 | . . . . . . . . . . . . 13 ⊢ (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ) | |
| 26 | 25 | 3ad2ant2 1134 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℕ) |
| 27 | 26 | nncnd 12256 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℂ) |
| 28 | 26 | nnne0d 12290 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ≠ 0) |
| 29 | 24, 27, 28 | divcan3d 12022 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚) |
| 30 | 29 | fveq2d 6880 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚)) |
| 31 | 30 | oveq1d 7420 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘((𝑑 · 𝑚) / 𝑑))↑2) = ((log‘𝑚)↑2)) |
| 32 | 31 | oveq2d 7421 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘𝑚)↑2))) |
| 33 | 32 | 2sumeq2dv 15721 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2))) |
| 34 | 21, 33 | eqtrd 2770 | . . . . 5 ⊢ (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2))) |
| 35 | 34 | oveq1d 7420 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) = (Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥)) |
| 36 | 35 | oveq1d 7420 | . . 3 ⊢ (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥))) = ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) |
| 37 | 36 | mpteq2ia 5216 | . 2 ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) |
| 38 | eqid 2735 | . . 3 ⊢ ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑) = ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑) | |
| 39 | 38 | selberglem2 27509 | . 2 ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) |
| 40 | 37, 39 | eqeltri 2830 | 1 ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 · cmul 11134 − cmin 11466 / cdiv 11894 ℕcn 12240 2c2 12295 ℤcz 12588 ℝ+crp 13008 ...cfz 13524 ⌊cfl 13807 ↑cexp 14079 𝑂(1)co1 15502 Σcsu 15702 ∥ cdvds 16272 logclog 26515 μcmu 27057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-o1 15506 df-lo1 15507 df-sum 15703 df-ef 16083 df-e 16084 df-sin 16085 df-cos 16086 df-tan 16087 df-pi 16088 df-dvds 16273 df-gcd 16514 df-prm 16691 df-pc 16857 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-cmp 23325 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-limc 25819 df-dv 25820 df-ulm 26338 df-log 26517 df-cxp 26518 df-atan 26829 df-em 26955 df-mu 27063 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |