![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumadd | Structured version Visualization version GIF version |
Description: Addition of infinite sums. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
Ref | Expression |
---|---|
esumadd.0 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumadd.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumadd.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumadd | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 +𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | nfcv 2898 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | esumadd.0 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | esumadd.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
5 | esumadd.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
6 | ge0xaddcl 13477 | . . 3 ⊢ ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞)) | |
7 | 4, 5, 6 | syl2anc 582 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞)) |
8 | xrge0base 32759 | . . . 4 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
9 | xrge0plusg 32761 | . . . 4 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
10 | xrge0cmn 21346 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
12 | xrge0tmd 33551 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd) |
14 | 4 | fmpttd 7128 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
15 | 5 | fmpttd 7128 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶(0[,]+∞)) |
16 | 1, 2, 3, 4 | esumel 33671 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
17 | 1, 2, 3, 5 | esumel 33671 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
18 | 8, 9, 11, 13, 3, 14, 15, 16, 17 | tsmsadd 24069 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘f +𝑒 (𝑘 ∈ 𝐴 ↦ 𝐶)))) |
19 | eqidd 2728 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
20 | eqidd 2728 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
21 | 3, 4, 5, 19, 20 | offval2 7709 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘f +𝑒 (𝑘 ∈ 𝐴 ↦ 𝐶)) = (𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶))) |
22 | 21 | oveq2d 7440 | . . 3 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘f +𝑒 (𝑘 ∈ 𝐴 ↦ 𝐶))) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶)))) |
23 | 18, 22 | eleqtrd 2830 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶)))) |
24 | 1, 2, 3, 7, 23 | esumid 33668 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 +𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5233 (class class class)co 7424 ∘f cof 7687 0cc0 11144 +∞cpnf 11281 +𝑒 cxad 13128 [,]cicc 13365 ↾s cress 17214 ℝ*𝑠cxrs 17487 CMndccmn 19740 TopMndctmd 23992 tsums ctsu 24048 Σ*cesum 33651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 ax-addf 11223 ax-mulf 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-iin 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7689 df-om 7875 df-1st 7997 df-2nd 7998 df-supp 8170 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-er 8729 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9392 df-fi 9440 df-sup 9471 df-inf 9472 df-oi 9539 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-q 12969 df-rp 13013 df-xneg 13130 df-xadd 13131 df-xmul 13132 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13523 df-fzo 13666 df-fl 13795 df-mod 13873 df-seq 14005 df-exp 14065 df-fac 14271 df-bc 14300 df-hash 14328 df-shft 15052 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-limsup 15453 df-clim 15470 df-rlim 15471 df-sum 15671 df-ef 16049 df-sin 16051 df-cos 16052 df-pi 16054 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-starv 17253 df-sca 17254 df-vsca 17255 df-ip 17256 df-tset 17257 df-ple 17258 df-ds 17260 df-unif 17261 df-hom 17262 df-cco 17263 df-rest 17409 df-topn 17410 df-0g 17428 df-gsum 17429 df-topgen 17430 df-pt 17431 df-prds 17434 df-ordt 17488 df-xrs 17489 df-qtop 17494 df-imas 17495 df-xps 17497 df-mre 17571 df-mrc 17572 df-acs 17574 df-ps 18563 df-tsr 18564 df-plusf 18604 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mhm 18745 df-submnd 18746 df-grp 18898 df-minusg 18899 df-sbg 18900 df-mulg 19029 df-subg 19083 df-cntz 19273 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 df-cring 20181 df-subrng 20488 df-subrg 20513 df-abv 20702 df-lmod 20750 df-scaf 20751 df-sra 21063 df-rgmod 21064 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22867 df-cld 22941 df-ntr 22942 df-cls 22943 df-nei 23020 df-lp 23058 df-perf 23059 df-cn 23149 df-cnp 23150 df-haus 23237 df-tx 23484 df-hmeo 23677 df-fil 23768 df-fm 23860 df-flim 23861 df-flf 23862 df-tmd 23994 df-tgp 23995 df-tsms 24049 df-trg 24082 df-xms 24244 df-ms 24245 df-tms 24246 df-nm 24509 df-ngp 24510 df-nrg 24512 df-nlm 24513 df-ii 24815 df-cncf 24816 df-limc 25813 df-dv 25814 df-log 26508 df-esum 33652 |
This theorem is referenced by: esumle 33682 |
Copyright terms: Public domain | W3C validator |