Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmat0op | Structured version Visualization version GIF version |
Description: The zero polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019.) |
Ref | Expression |
---|---|
pmatring.p | ⊢ 𝑃 = (Poly1‘𝑅) |
pmatring.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
pmat0op.z | ⊢ 0 = (0g‘𝑃) |
Ref | Expression |
---|---|
pmat0op | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝐶) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatring.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1ring 21198 | . 2 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
3 | pmatring.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
4 | pmat0op.z | . . 3 ⊢ 0 = (0g‘𝑃) | |
5 | 3, 4 | mat0op 21345 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (0g‘𝐶) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 0 )) |
6 | 2, 5 | sylan2 596 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝐶) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ‘cfv 6400 (class class class)co 7234 ∈ cmpo 7236 Fincfn 8649 0gc0g 16974 Ringcrg 19592 Poly1cpl1 21127 Mat cmat 21333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10812 ax-resscn 10813 ax-1cn 10814 ax-icn 10815 ax-addcl 10816 ax-addrcl 10817 ax-mulcl 10818 ax-mulrcl 10819 ax-mulcom 10820 ax-addass 10821 ax-mulass 10822 ax-distr 10823 ax-i2m1 10824 ax-1ne0 10825 ax-1rid 10826 ax-rnegex 10827 ax-rrecex 10828 ax-cnre 10829 ax-pre-lttri 10830 ax-pre-lttrn 10831 ax-pre-ltadd 10832 ax-pre-mulgt0 10833 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3711 df-csb 3828 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-pss 3901 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-ot 4566 df-uni 4836 df-int 4876 df-iun 4922 df-iin 4923 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-se 5527 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-isom 6409 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-of 7490 df-ofr 7491 df-om 7666 df-1st 7782 df-2nd 7783 df-supp 7927 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-map 8533 df-pm 8534 df-ixp 8602 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-fsupp 9013 df-sup 9085 df-oi 9153 df-card 9582 df-pnf 10896 df-mnf 10897 df-xr 10898 df-ltxr 10899 df-le 10900 df-sub 11091 df-neg 11092 df-nn 11858 df-2 11920 df-3 11921 df-4 11922 df-5 11923 df-6 11924 df-7 11925 df-8 11926 df-9 11927 df-n0 12118 df-z 12204 df-dec 12321 df-uz 12466 df-fz 13123 df-fzo 13266 df-seq 13604 df-hash 13927 df-struct 16730 df-sets 16747 df-slot 16765 df-ndx 16775 df-base 16791 df-ress 16815 df-plusg 16845 df-mulr 16846 df-sca 16848 df-vsca 16849 df-ip 16850 df-tset 16851 df-ple 16852 df-ds 16854 df-hom 16856 df-cco 16857 df-0g 16976 df-gsum 16977 df-prds 16982 df-pws 16984 df-mre 17119 df-mrc 17120 df-acs 17122 df-mgm 18144 df-sgrp 18193 df-mnd 18204 df-mhm 18248 df-submnd 18249 df-grp 18398 df-minusg 18399 df-sbg 18400 df-mulg 18519 df-subg 18570 df-ghm 18650 df-cntz 18741 df-cmn 19202 df-abl 19203 df-mgp 19535 df-ur 19547 df-ring 19594 df-subrg 19828 df-lmod 19931 df-lss 19999 df-sra 20239 df-rgmod 20240 df-dsmm 20724 df-frlm 20739 df-psr 20897 df-mpl 20899 df-opsr 20901 df-psr1 21130 df-ply1 21132 df-mat 21334 |
This theorem is referenced by: pmat0opsc 21624 |
Copyright terms: Public domain | W3C validator |