Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > selvval2lem5 | Structured version Visualization version GIF version |
Description: The fifth argument passed to evalSub is in the domain (a function 𝐼⟶𝐸). (Contributed by SN, 22-Feb-2024.) |
Ref | Expression |
---|---|
selvval2lem5.u | ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
selvval2lem5.t | ⊢ 𝑇 = (𝐽 mPoly 𝑈) |
selvval2lem5.c | ⊢ 𝐶 = (algSc‘𝑇) |
selvval2lem5.e | ⊢ 𝐸 = (Base‘𝑇) |
selvval2lem5.f | ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) |
selvval2lem5.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
selvval2lem5.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
selvval2lem5.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
Ref | Expression |
---|---|
selvval2lem5 | ⊢ (𝜑 → 𝐹 ∈ (𝐸 ↑m 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvval2lem5.t | . . . . . 6 ⊢ 𝑇 = (𝐽 mPoly 𝑈) | |
2 | eqid 2738 | . . . . . 6 ⊢ (𝐽 mVar 𝑈) = (𝐽 mVar 𝑈) | |
3 | selvval2lem5.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑇) | |
4 | selvval2lem5.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | selvval2lem5.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
6 | 4, 5 | ssexd 5243 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ V) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝐽 ∈ V) |
8 | 4 | difexd 5248 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
9 | selvval2lem5.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
10 | crngring 19710 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
12 | selvval2lem5.u | . . . . . . . . 9 ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) | |
13 | 12 | mplring 21134 | . . . . . . . 8 ⊢ (((𝐼 ∖ 𝐽) ∈ V ∧ 𝑅 ∈ Ring) → 𝑈 ∈ Ring) |
14 | 8, 11, 13 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ Ring) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝑈 ∈ Ring) |
16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) | |
17 | 1, 2, 3, 7, 15, 16 | mvrcl 21131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸) |
18 | 17 | adantlr 711 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ∈ 𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸) |
19 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
20 | selvval2lem5.c | . . . . . . 7 ⊢ 𝐶 = (algSc‘𝑇) | |
21 | 1, 3, 19, 20, 6, 14 | mplasclf 21183 | . . . . . 6 ⊢ (𝜑 → 𝐶:(Base‘𝑈)⟶𝐸) |
22 | 21 | ad2antrr 722 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝐶:(Base‘𝑈)⟶𝐸) |
23 | eqid 2738 | . . . . . 6 ⊢ ((𝐼 ∖ 𝐽) mVar 𝑅) = ((𝐼 ∖ 𝐽) mVar 𝑅) | |
24 | 8 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (𝐼 ∖ 𝐽) ∈ V) |
25 | 11 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝑅 ∈ Ring) |
26 | eldif 3893 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐼 ∖ 𝐽) ↔ (𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽)) | |
27 | 26 | biimpri 227 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽) → 𝑥 ∈ (𝐼 ∖ 𝐽)) |
28 | 27 | adantll 710 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝑥 ∈ (𝐼 ∖ 𝐽)) |
29 | 12, 23, 19, 24, 25, 28 | mvrcl 21131 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥) ∈ (Base‘𝑈)) |
30 | 22, 29 | ffvelrnd 6944 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)) ∈ 𝐸) |
31 | 18, 30 | ifclda 4491 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) ∈ 𝐸) |
32 | selvval2lem5.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) | |
33 | 31, 32 | fmptd 6970 | . 2 ⊢ (𝜑 → 𝐹:𝐼⟶𝐸) |
34 | fvexd 6771 | . . . 4 ⊢ (𝜑 → (Base‘𝑇) ∈ V) | |
35 | 3, 34 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝐸 ∈ V) |
36 | 35, 4 | elmapd 8587 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝐸 ↑m 𝐼) ↔ 𝐹:𝐼⟶𝐸)) |
37 | 33, 36 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐸 ↑m 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 ifcif 4456 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Basecbs 16840 Ringcrg 19698 CRingccrg 19699 algSccascl 20969 mVar cmvr 21018 mPoly cmpl 21019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-lmod 20040 df-lss 20109 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 |
This theorem is referenced by: selvcl 40156 |
Copyright terms: Public domain | W3C validator |