Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ffvelrnd | Structured version Visualization version GIF version |
Description: A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
ffvelrnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
ffvelrnd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
ffvelrnd | ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelrnd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
2 | ffvelrnd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | ffvelrnda 6970 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
4 | 1, 3 | mpdan 684 | 1 ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐵) |
Copyright terms: Public domain | W3C validator |