Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sublimc Structured version   Visualization version   GIF version

Theorem sublimc 45689
Description: Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
sublimc.f 𝐹 = (𝑥𝐴𝐵)
sublimc.2 𝐺 = (𝑥𝐴𝐶)
sublimc.3 𝐻 = (𝑥𝐴 ↦ (𝐵𝐶))
sublimc.4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
sublimc.5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
sublimc.6 (𝜑𝐸 ∈ (𝐹 lim 𝐷))
sublimc.7 (𝜑𝐼 ∈ (𝐺 lim 𝐷))
Assertion
Ref Expression
sublimc (𝜑 → (𝐸𝐼) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)

Proof of Theorem sublimc
StepHypRef Expression
1 sublimc.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 eqid 2731 . . 3 (𝑥𝐴 ↦ -𝐶) = (𝑥𝐴 ↦ -𝐶)
3 eqid 2731 . . 3 (𝑥𝐴 ↦ (𝐵 + -𝐶)) = (𝑥𝐴 ↦ (𝐵 + -𝐶))
4 sublimc.4 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
5 sublimc.5 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
65negcld 11456 . . 3 ((𝜑𝑥𝐴) → -𝐶 ∈ ℂ)
7 sublimc.6 . . 3 (𝜑𝐸 ∈ (𝐹 lim 𝐷))
8 sublimc.2 . . . 4 𝐺 = (𝑥𝐴𝐶)
9 sublimc.7 . . . 4 (𝜑𝐼 ∈ (𝐺 lim 𝐷))
108, 2, 5, 9neglimc 45684 . . 3 (𝜑 → -𝐼 ∈ ((𝑥𝐴 ↦ -𝐶) lim 𝐷))
111, 2, 3, 4, 6, 7, 10addlimc 45685 . 2 (𝜑 → (𝐸 + -𝐼) ∈ ((𝑥𝐴 ↦ (𝐵 + -𝐶)) lim 𝐷))
12 limccl 25801 . . . . 5 (𝐹 lim 𝐷) ⊆ ℂ
1312, 7sselid 3932 . . . 4 (𝜑𝐸 ∈ ℂ)
14 limccl 25801 . . . . 5 (𝐺 lim 𝐷) ⊆ ℂ
1514, 9sselid 3932 . . . 4 (𝜑𝐼 ∈ ℂ)
1613, 15negsubd 11475 . . 3 (𝜑 → (𝐸 + -𝐼) = (𝐸𝐼))
1716eqcomd 2737 . 2 (𝜑 → (𝐸𝐼) = (𝐸 + -𝐼))
18 sublimc.3 . . . 4 𝐻 = (𝑥𝐴 ↦ (𝐵𝐶))
194, 5negsubd 11475 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 + -𝐶) = (𝐵𝐶))
2019eqcomd 2737 . . . . 5 ((𝜑𝑥𝐴) → (𝐵𝐶) = (𝐵 + -𝐶))
2120mpteq2dva 5184 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) = (𝑥𝐴 ↦ (𝐵 + -𝐶)))
2218, 21eqtrid 2778 . . 3 (𝜑𝐻 = (𝑥𝐴 ↦ (𝐵 + -𝐶)))
2322oveq1d 7361 . 2 (𝜑 → (𝐻 lim 𝐷) = ((𝑥𝐴 ↦ (𝐵 + -𝐶)) lim 𝐷))
2411, 17, 233eltr4d 2846 1 (𝜑 → (𝐸𝐼) ∈ (𝐻 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cmpt 5172  (class class class)co 7346  cc 11001   + caddc 11006  cmin 11341  -cneg 11342   lim climc 25788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mulr 17172  df-starv 17173  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-rest 17323  df-topn 17324  df-topgen 17344  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cnp 23141  df-xms 24233  df-ms 24234  df-limc 25792
This theorem is referenced by:  fourierdlem60  46203  fourierdlem61  46204  fourierdlem74  46217  fourierdlem75  46218  fourierdlem76  46219
  Copyright terms: Public domain W3C validator