![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sublimc | Structured version Visualization version GIF version |
Description: Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
sublimc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
sublimc.2 | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
sublimc.3 | ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) |
sublimc.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
sublimc.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
sublimc.6 | ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) |
sublimc.7 | ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) |
Ref | Expression |
---|---|
sublimc | ⊢ (𝜑 → (𝐸 − 𝐼) ∈ (𝐻 limℂ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sublimc.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ -𝐶) = (𝑥 ∈ 𝐴 ↦ -𝐶) | |
3 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶)) | |
4 | sublimc.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
5 | sublimc.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
6 | 5 | negcld 11562 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ∈ ℂ) |
7 | sublimc.6 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) | |
8 | sublimc.2 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
9 | sublimc.7 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) | |
10 | 8, 2, 5, 9 | neglimc 44661 | . . 3 ⊢ (𝜑 → -𝐼 ∈ ((𝑥 ∈ 𝐴 ↦ -𝐶) limℂ 𝐷)) |
11 | 1, 2, 3, 4, 6, 7, 10 | addlimc 44662 | . 2 ⊢ (𝜑 → (𝐸 + -𝐼) ∈ ((𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶)) limℂ 𝐷)) |
12 | limccl 25624 | . . . . 5 ⊢ (𝐹 limℂ 𝐷) ⊆ ℂ | |
13 | 12, 7 | sselid 3979 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
14 | limccl 25624 | . . . . 5 ⊢ (𝐺 limℂ 𝐷) ⊆ ℂ | |
15 | 14, 9 | sselid 3979 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
16 | 13, 15 | negsubd 11581 | . . 3 ⊢ (𝜑 → (𝐸 + -𝐼) = (𝐸 − 𝐼)) |
17 | 16 | eqcomd 2736 | . 2 ⊢ (𝜑 → (𝐸 − 𝐼) = (𝐸 + -𝐼)) |
18 | sublimc.3 | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) | |
19 | 4, 5 | negsubd 11581 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + -𝐶) = (𝐵 − 𝐶)) |
20 | 19 | eqcomd 2736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐶) = (𝐵 + -𝐶)) |
21 | 20 | mpteq2dva 5247 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶))) |
22 | 18, 21 | eqtrid 2782 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶))) |
23 | 22 | oveq1d 7426 | . 2 ⊢ (𝜑 → (𝐻 limℂ 𝐷) = ((𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶)) limℂ 𝐷)) |
24 | 11, 17, 23 | 3eltr4d 2846 | 1 ⊢ (𝜑 → (𝐸 − 𝐼) ∈ (𝐻 limℂ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ↦ cmpt 5230 (class class class)co 7411 ℂcc 11110 + caddc 11115 − cmin 11448 -cneg 11449 limℂ climc 25611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fi 9408 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-fz 13489 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-starv 17216 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-rest 17372 df-topn 17373 df-topgen 17393 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cnp 22952 df-xms 24046 df-ms 24047 df-limc 25615 |
This theorem is referenced by: fourierdlem60 45180 fourierdlem61 45181 fourierdlem74 45194 fourierdlem75 45195 fourierdlem76 45196 |
Copyright terms: Public domain | W3C validator |