Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sublimc Structured version   Visualization version   GIF version

Theorem sublimc 45634
Description: Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
sublimc.f 𝐹 = (𝑥𝐴𝐵)
sublimc.2 𝐺 = (𝑥𝐴𝐶)
sublimc.3 𝐻 = (𝑥𝐴 ↦ (𝐵𝐶))
sublimc.4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
sublimc.5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
sublimc.6 (𝜑𝐸 ∈ (𝐹 lim 𝐷))
sublimc.7 (𝜑𝐼 ∈ (𝐺 lim 𝐷))
Assertion
Ref Expression
sublimc (𝜑 → (𝐸𝐼) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)

Proof of Theorem sublimc
StepHypRef Expression
1 sublimc.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 eqid 2729 . . 3 (𝑥𝐴 ↦ -𝐶) = (𝑥𝐴 ↦ -𝐶)
3 eqid 2729 . . 3 (𝑥𝐴 ↦ (𝐵 + -𝐶)) = (𝑥𝐴 ↦ (𝐵 + -𝐶))
4 sublimc.4 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
5 sublimc.5 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
65negcld 11480 . . 3 ((𝜑𝑥𝐴) → -𝐶 ∈ ℂ)
7 sublimc.6 . . 3 (𝜑𝐸 ∈ (𝐹 lim 𝐷))
8 sublimc.2 . . . 4 𝐺 = (𝑥𝐴𝐶)
9 sublimc.7 . . . 4 (𝜑𝐼 ∈ (𝐺 lim 𝐷))
108, 2, 5, 9neglimc 45629 . . 3 (𝜑 → -𝐼 ∈ ((𝑥𝐴 ↦ -𝐶) lim 𝐷))
111, 2, 3, 4, 6, 7, 10addlimc 45630 . 2 (𝜑 → (𝐸 + -𝐼) ∈ ((𝑥𝐴 ↦ (𝐵 + -𝐶)) lim 𝐷))
12 limccl 25792 . . . . 5 (𝐹 lim 𝐷) ⊆ ℂ
1312, 7sselid 3935 . . . 4 (𝜑𝐸 ∈ ℂ)
14 limccl 25792 . . . . 5 (𝐺 lim 𝐷) ⊆ ℂ
1514, 9sselid 3935 . . . 4 (𝜑𝐼 ∈ ℂ)
1613, 15negsubd 11499 . . 3 (𝜑 → (𝐸 + -𝐼) = (𝐸𝐼))
1716eqcomd 2735 . 2 (𝜑 → (𝐸𝐼) = (𝐸 + -𝐼))
18 sublimc.3 . . . 4 𝐻 = (𝑥𝐴 ↦ (𝐵𝐶))
194, 5negsubd 11499 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 + -𝐶) = (𝐵𝐶))
2019eqcomd 2735 . . . . 5 ((𝜑𝑥𝐴) → (𝐵𝐶) = (𝐵 + -𝐶))
2120mpteq2dva 5188 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) = (𝑥𝐴 ↦ (𝐵 + -𝐶)))
2218, 21eqtrid 2776 . . 3 (𝜑𝐻 = (𝑥𝐴 ↦ (𝐵 + -𝐶)))
2322oveq1d 7368 . 2 (𝜑 → (𝐻 lim 𝐷) = ((𝑥𝐴 ↦ (𝐵 + -𝐶)) lim 𝐷))
2411, 17, 233eltr4d 2843 1 (𝜑 → (𝐸𝐼) ∈ (𝐻 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5176  (class class class)co 7353  cc 11026   + caddc 11031  cmin 11365  -cneg 11366   lim climc 25779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-rest 17344  df-topn 17345  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cnp 23131  df-xms 24224  df-ms 24225  df-limc 25783
This theorem is referenced by:  fourierdlem60  46148  fourierdlem61  46149  fourierdlem74  46162  fourierdlem75  46163  fourierdlem76  46164
  Copyright terms: Public domain W3C validator