![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sublimc | Structured version Visualization version GIF version |
Description: Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
sublimc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
sublimc.2 | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
sublimc.3 | ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) |
sublimc.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
sublimc.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
sublimc.6 | ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) |
sublimc.7 | ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) |
Ref | Expression |
---|---|
sublimc | ⊢ (𝜑 → (𝐸 − 𝐼) ∈ (𝐻 limℂ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sublimc.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | eqid 2778 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ -𝐶) = (𝑥 ∈ 𝐴 ↦ -𝐶) | |
3 | eqid 2778 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶)) | |
4 | sublimc.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
5 | sublimc.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
6 | 5 | negcld 10723 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ∈ ℂ) |
7 | sublimc.6 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) | |
8 | sublimc.2 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
9 | sublimc.7 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) | |
10 | 8, 2, 5, 9 | neglimc 40801 | . . 3 ⊢ (𝜑 → -𝐼 ∈ ((𝑥 ∈ 𝐴 ↦ -𝐶) limℂ 𝐷)) |
11 | 1, 2, 3, 4, 6, 7, 10 | addlimc 40802 | . 2 ⊢ (𝜑 → (𝐸 + -𝐼) ∈ ((𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶)) limℂ 𝐷)) |
12 | limccl 24087 | . . . . 5 ⊢ (𝐹 limℂ 𝐷) ⊆ ℂ | |
13 | 12, 7 | sseldi 3819 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
14 | limccl 24087 | . . . . 5 ⊢ (𝐺 limℂ 𝐷) ⊆ ℂ | |
15 | 14, 9 | sseldi 3819 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
16 | 13, 15 | negsubd 10742 | . . 3 ⊢ (𝜑 → (𝐸 + -𝐼) = (𝐸 − 𝐼)) |
17 | 16 | eqcomd 2784 | . 2 ⊢ (𝜑 → (𝐸 − 𝐼) = (𝐸 + -𝐼)) |
18 | sublimc.3 | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) | |
19 | 4, 5 | negsubd 10742 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + -𝐶) = (𝐵 − 𝐶)) |
20 | 19 | eqcomd 2784 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐶) = (𝐵 + -𝐶)) |
21 | 20 | mpteq2dva 4981 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶))) |
22 | 18, 21 | syl5eq 2826 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶))) |
23 | 22 | oveq1d 6939 | . 2 ⊢ (𝜑 → (𝐻 limℂ 𝐷) = ((𝑥 ∈ 𝐴 ↦ (𝐵 + -𝐶)) limℂ 𝐷)) |
24 | 11, 17, 23 | 3eltr4d 2874 | 1 ⊢ (𝜑 → (𝐸 − 𝐼) ∈ (𝐻 limℂ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ↦ cmpt 4967 (class class class)co 6924 ℂcc 10272 + caddc 10277 − cmin 10608 -cneg 10609 limℂ climc 24074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fi 8607 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-dec 11851 df-uz 11998 df-q 12101 df-rp 12143 df-xneg 12262 df-xadd 12263 df-xmul 12264 df-fz 12649 df-seq 13125 df-exp 13184 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-plusg 16362 df-mulr 16363 df-starv 16364 df-tset 16368 df-ple 16369 df-ds 16371 df-unif 16372 df-rest 16480 df-topn 16481 df-topgen 16501 df-psmet 20145 df-xmet 20146 df-met 20147 df-bl 20148 df-mopn 20149 df-cnfld 20154 df-top 21117 df-topon 21134 df-topsp 21156 df-bases 21169 df-cnp 21451 df-xms 22544 df-ms 22545 df-limc 24078 |
This theorem is referenced by: fourierdlem60 41324 fourierdlem61 41325 fourierdlem74 41338 fourierdlem75 41339 fourierdlem76 41340 |
Copyright terms: Public domain | W3C validator |