Step | Hyp | Ref
| Expression |
1 | | breq1 5169 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → (𝑑 ∥ (♯‘𝐵) ↔ 𝑐 ∥ (♯‘𝐵))) |
2 | | eqeq2 2752 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑐 → (((od‘𝐺)‘𝑥) = 𝑑 ↔ ((od‘𝐺)‘𝑥) = 𝑐)) |
3 | 2 | rabbidv 3451 |
. . . . . . . . 9
⊢ (𝑑 = 𝑐 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) |
4 | 3 | neeq1d 3006 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅ ↔ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅)) |
5 | 1, 4 | anbi12d 631 |
. . . . . . 7
⊢ (𝑑 = 𝑐 → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) ↔ (𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅))) |
6 | 3 | fveq2d 6924 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐})) |
7 | | fveq2 6920 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → (ϕ‘𝑑) = (ϕ‘𝑐)) |
8 | 6, 7 | eqeq12d 2756 |
. . . . . . 7
⊢ (𝑑 = 𝑐 → ((♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑) ↔ (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) |
9 | 5, 8 | imbi12d 344 |
. . . . . 6
⊢ (𝑑 = 𝑐 → (((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) ↔ ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
10 | 9 | imbi2d 340 |
. . . . 5
⊢ (𝑑 = 𝑐 → ((𝜑 → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) ↔ (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
11 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → 𝜑) |
12 | | simplll 774 |
. . . . . . . . . . . . 13
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → 𝑑 ∈ ℕ) |
13 | 11, 12 | jca 511 |
. . . . . . . . . . . 12
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → (𝜑 ∧ 𝑑 ∈ ℕ)) |
14 | | breq1 5169 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑒 → (𝑐 < 𝑑 ↔ 𝑒 < 𝑑)) |
15 | | breq1 5169 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑒 → (𝑐 ∥ (♯‘𝐵) ↔ 𝑒 ∥ (♯‘𝐵))) |
16 | | eqeq2 2752 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = 𝑒 → (((od‘𝐺)‘𝑥) = 𝑐 ↔ ((od‘𝐺)‘𝑥) = 𝑒)) |
17 | 16 | rabbidv 3451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑒 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) |
18 | 17 | neeq1d 3006 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑒 → ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅ ↔ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅)) |
19 | 15, 18 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑒 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) ↔ (𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅))) |
20 | 17 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑒 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒})) |
21 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑒 → (ϕ‘𝑐) = (ϕ‘𝑒)) |
22 | 20, 21 | eqeq12d 2756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑒 → ((♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐) ↔ (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) |
23 | 19, 22 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑒 → (((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)) ↔ ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) |
24 | 23 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑒 → ((𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) ↔ (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) |
25 | 14, 24 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑒 → ((𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ↔ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))))) |
26 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
27 | 26 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
29 | 28 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
30 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) → 𝑒 ∈ ℕ) |
31 | 25, 29, 30 | rspcdva 3636 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) → (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) |
32 | | simp-5r 785 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) ∧ 𝑒 < 𝑑) → 𝜑) |
33 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) ∧ 𝑒 < 𝑑) → 𝑒 < 𝑑) |
34 | | simplr 768 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) ∧ 𝑒 < 𝑑) → (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) |
35 | 33, 34 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) ∧ 𝑒 < 𝑑) → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) |
36 | 32, 35 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) ∧ 𝑒 < 𝑑) → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) |
37 | 36 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) → (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) |
38 | 37 | ex 412 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) → ((𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) → (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) |
39 | 31, 38 | mpd 15 |
. . . . . . . . . . . . . 14
⊢
(((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) → (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) |
40 | 39 | ralrimiva 3152 |
. . . . . . . . . . . . 13
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → ∀𝑒 ∈ ℕ (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) |
41 | | nfv 1913 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑐(𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) |
42 | | nfv 1913 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑒(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) |
43 | | breq1 5169 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑐 → (𝑒 < 𝑑 ↔ 𝑐 < 𝑑)) |
44 | | breq1 5169 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑐 → (𝑒 ∥ (♯‘𝐵) ↔ 𝑐 ∥ (♯‘𝐵))) |
45 | | eqeq2 2752 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑐 → (((od‘𝐺)‘𝑥) = 𝑒 ↔ ((od‘𝐺)‘𝑥) = 𝑐)) |
46 | 45 | rabbidv 3451 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑐 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) |
47 | 46 | neeq1d 3006 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑐 → ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅ ↔ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅)) |
48 | 44, 47 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑐 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) ↔ (𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅))) |
49 | 46 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑐 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐})) |
50 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑐 → (ϕ‘𝑒) = (ϕ‘𝑐)) |
51 | 49, 50 | eqeq12d 2756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑐 → ((♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒) ↔ (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) |
52 | 48, 51 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑐 → (((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)) ↔ ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
53 | 43, 52 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = 𝑐 → ((𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) ↔ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
54 | 41, 42, 53 | cbvralw 3312 |
. . . . . . . . . . . . . 14
⊢
(∀𝑒 ∈
ℕ (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) ↔ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
55 | 54 | biimpi 216 |
. . . . . . . . . . . . 13
⊢
(∀𝑒 ∈
ℕ (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
56 | 40, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
57 | 13, 56 | jca 511 |
. . . . . . . . . . 11
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → ((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
58 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → 𝑑 ∥ (♯‘𝐵)) |
59 | 57, 58 | jca 511 |
. . . . . . . . . 10
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵))) |
60 | | simprr 772 |
. . . . . . . . . 10
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) |
61 | 59, 60 | jca 511 |
. . . . . . . . 9
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → ((((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) |
62 | | rabn0 4412 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) |
63 | 62 | biimpi 216 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅ → ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) |
64 | 63 | adantl 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) |
65 | | simp-4l 782 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
66 | | simp-4r 783 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝑑 ∥ (♯‘𝐵)) |
67 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝑎 ∈ 𝐵) |
68 | 65, 66, 67 | jca31 514 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ((((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵)) |
69 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ((od‘𝐺)‘𝑎) = 𝑑) |
70 | 68, 69 | jca 511 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → (((((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑)) |
71 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥𝐵 |
72 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑧𝐵 |
73 | | nfv 1913 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑧((od‘𝐺)‘𝑥) = 𝑑 |
74 | | nfv 1913 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥((od‘𝐺)‘𝑧) = 𝑑 |
75 | | fveqeq2 6929 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (((od‘𝐺)‘𝑥) = 𝑑 ↔ ((od‘𝐺)‘𝑧) = 𝑑)) |
76 | 71, 72, 73, 74, 75 | cbvrabw 3481 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} = {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑑} |
77 | 76 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} = {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑑}) |
78 | 77 | fveq2d 6924 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑑})) |
79 | | unitscyglem1.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = (Base‘𝐺) |
80 | | unitscyglem1.2 |
. . . . . . . . . . . . . . . 16
⊢ ↑ =
(.g‘𝐺) |
81 | | unitscyglem1.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺 ∈ Grp) |
82 | 81 | ad5antr 733 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝐺 ∈ Grp) |
83 | | unitscyglem1.4 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ Fin) |
84 | 83 | ad5antr 733 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝐵 ∈ Fin) |
85 | | unitscyglem1.5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛) |
86 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑧(𝑛 ↑ 𝑥) = (0g‘𝐺) |
87 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑥(𝑛 ↑ 𝑧) = (0g‘𝐺) |
88 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 𝑧 → (𝑛 ↑ 𝑥) = (𝑛 ↑ 𝑧)) |
89 | 88 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑧 → ((𝑛 ↑ 𝑥) = (0g‘𝐺) ↔ (𝑛 ↑ 𝑧) = (0g‘𝐺))) |
90 | 71, 72, 86, 87, 89 | cbvrabw 3481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)} = {𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)} |
91 | 90 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)} = {𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) |
92 | 91 | fveq2d 6924 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) = (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)})) |
93 | 92 | breq1d 5176 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((♯‘{𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛 ↔ (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) ≤ 𝑛)) |
94 | 93 | ralbidv 3184 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (∀𝑛 ∈ ℕ
(♯‘{𝑥 ∈
𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛 ↔ ∀𝑛 ∈ ℕ (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) ≤ 𝑛)) |
95 | 94 | biimpd 229 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (∀𝑛 ∈ ℕ
(♯‘{𝑥 ∈
𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛 → ∀𝑛 ∈ ℕ (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) ≤ 𝑛)) |
96 | 85, 95 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) ≤ 𝑛) |
97 | 96 | ad5antr 733 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ∀𝑛 ∈ ℕ (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) ≤ 𝑛) |
98 | | simp-5r 785 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝑑 ∈ ℕ) |
99 | | simpllr 775 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝑑 ∥ (♯‘𝐵)) |
100 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝑎 ∈ 𝐵) |
101 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ((od‘𝐺)‘𝑎) = 𝑑) |
102 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑥((od‘𝐺)‘𝑧) = 𝑐 |
103 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑧((od‘𝐺)‘𝑥) = 𝑐 |
104 | | fveqeq2 6929 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑥 → (((od‘𝐺)‘𝑧) = 𝑐 ↔ ((od‘𝐺)‘𝑥) = 𝑐)) |
105 | 72, 71, 102, 103, 104 | cbvrabw 3481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} |
106 | | eqcom 2747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ↔ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} = {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) |
107 | 105, 106 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} = {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} |
108 | 107 | neeq1i 3011 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅ ↔ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) |
109 | 108 | anbi2i 622 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) ↔ (𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅)) |
110 | 107 | fveq2i 6923 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(♯‘{𝑥
∈ 𝐵 ∣
((od‘𝐺)‘𝑥) = 𝑐}) = (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) |
111 | 110 | eqeq1i 2745 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((♯‘{𝑥
∈ 𝐵 ∣
((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐) ↔ (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)) |
112 | 109, 111 | imbi12i 350 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)) ↔ ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐))) |
113 | 112 | imbi2i 336 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) ↔ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
114 | 113 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) → (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
115 | 114 | ralimi 3089 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑐 ∈
ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
116 | 115 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
117 | 116 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
118 | 117 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
119 | 118 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
120 | 79, 80, 82, 84, 97, 98, 99, 100, 101, 119 | unitscyglem2 42153 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑑}) = (ϕ‘𝑑)) |
121 | 78, 120 | eqtrd 2780 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) |
122 | 70, 121 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) |
123 | | nfv 1913 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎((od‘𝐺)‘𝑥) = 𝑑 |
124 | | nfv 1913 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥((od‘𝐺)‘𝑎) = 𝑑 |
125 | | fveqeq2 6929 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (((od‘𝐺)‘𝑥) = 𝑑 ↔ ((od‘𝐺)‘𝑎) = 𝑑)) |
126 | 123, 124,
125 | cbvrexw 3313 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
𝐵 ((od‘𝐺)‘𝑥) = 𝑑 ↔ ∃𝑎 ∈ 𝐵 ((od‘𝐺)‘𝑎) = 𝑑) |
127 | 126 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
𝐵 ((od‘𝐺)‘𝑥) = 𝑑 → ∃𝑎 ∈ 𝐵 ((od‘𝐺)‘𝑎) = 𝑑) |
128 | 127 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) → ∃𝑎 ∈ 𝐵 ((od‘𝐺)‘𝑎) = 𝑑) |
129 | 122, 128 | r19.29a 3168 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) |
130 | 129 | ex 412 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) → (∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) |
131 | 130 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) |
132 | 64, 131 | mpd 15 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) |
133 | 61, 132 | syl 17 |
. . . . . . . 8
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) |
134 | 133 | ex 412 |
. . . . . . 7
⊢ (((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) |
135 | 134 | ex 412 |
. . . . . 6
⊢ ((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) → (𝜑 → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)))) |
136 | 135 | ex 412 |
. . . . 5
⊢ (𝑑 ∈ ℕ →
(∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) → (𝜑 → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))))) |
137 | 10, 136 | indstr 12981 |
. . . 4
⊢ (𝑑 ∈ ℕ → (𝜑 → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)))) |
138 | 137 | com12 32 |
. . 3
⊢ (𝜑 → (𝑑 ∈ ℕ → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)))) |
139 | 138 | imp 406 |
. 2
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) |
140 | 139 | ralrimiva 3152 |
1
⊢ (𝜑 → ∀𝑑 ∈ ℕ ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) |