| Step | Hyp | Ref
| Expression |
| 1 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → (𝑑 ∥ (♯‘𝐵) ↔ 𝑐 ∥ (♯‘𝐵))) |
| 2 | | eqeq2 2749 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑐 → (((od‘𝐺)‘𝑥) = 𝑑 ↔ ((od‘𝐺)‘𝑥) = 𝑐)) |
| 3 | 2 | rabbidv 3444 |
. . . . . . . . 9
⊢ (𝑑 = 𝑐 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) |
| 4 | 3 | neeq1d 3000 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅ ↔ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅)) |
| 5 | 1, 4 | anbi12d 632 |
. . . . . . 7
⊢ (𝑑 = 𝑐 → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) ↔ (𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅))) |
| 6 | 3 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐})) |
| 7 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → (ϕ‘𝑑) = (ϕ‘𝑐)) |
| 8 | 6, 7 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑑 = 𝑐 → ((♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑) ↔ (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) |
| 9 | 5, 8 | imbi12d 344 |
. . . . . 6
⊢ (𝑑 = 𝑐 → (((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) ↔ ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
| 10 | 9 | imbi2d 340 |
. . . . 5
⊢ (𝑑 = 𝑐 → ((𝜑 → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) ↔ (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
| 11 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → 𝜑) |
| 12 | | simplll 775 |
. . . . . . . . . . . . 13
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → 𝑑 ∈ ℕ) |
| 13 | 11, 12 | jca 511 |
. . . . . . . . . . . 12
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → (𝜑 ∧ 𝑑 ∈ ℕ)) |
| 14 | | breq1 5146 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑒 → (𝑐 < 𝑑 ↔ 𝑒 < 𝑑)) |
| 15 | | breq1 5146 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑒 → (𝑐 ∥ (♯‘𝐵) ↔ 𝑒 ∥ (♯‘𝐵))) |
| 16 | | eqeq2 2749 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = 𝑒 → (((od‘𝐺)‘𝑥) = 𝑐 ↔ ((od‘𝐺)‘𝑥) = 𝑒)) |
| 17 | 16 | rabbidv 3444 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑒 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) |
| 18 | 17 | neeq1d 3000 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑒 → ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅ ↔ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅)) |
| 19 | 15, 18 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑒 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) ↔ (𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅))) |
| 20 | 17 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑒 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒})) |
| 21 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑒 → (ϕ‘𝑐) = (ϕ‘𝑒)) |
| 22 | 20, 21 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑒 → ((♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐) ↔ (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) |
| 23 | 19, 22 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑒 → (((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)) ↔ ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) |
| 24 | 23 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑒 → ((𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) ↔ (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) |
| 25 | 14, 24 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑒 → ((𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ↔ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))))) |
| 26 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
| 27 | 26 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
| 28 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
| 29 | 28 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
| 30 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) → 𝑒 ∈ ℕ) |
| 31 | 25, 29, 30 | rspcdva 3623 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) → (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) |
| 32 | | simp-5r 786 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) ∧ 𝑒 < 𝑑) → 𝜑) |
| 33 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) ∧ 𝑒 < 𝑑) → 𝑒 < 𝑑) |
| 34 | | simplr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) ∧ 𝑒 < 𝑑) → (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) |
| 35 | 33, 34 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) ∧ 𝑒 < 𝑑) → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) |
| 36 | 32, 35 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) ∧ 𝑒 < 𝑑) → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) |
| 37 | 36 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) ∧ (𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) → (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) |
| 38 | 37 | ex 412 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) → ((𝑒 < 𝑑 → (𝜑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) → (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))))) |
| 39 | 31, 38 | mpd 15 |
. . . . . . . . . . . . . 14
⊢
(((((𝑑 ∈
ℕ ∧ ∀𝑐
∈ ℕ (𝑐 <
𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) ∧ 𝑒 ∈ ℕ) → (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) |
| 40 | 39 | ralrimiva 3146 |
. . . . . . . . . . . . 13
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → ∀𝑒 ∈ ℕ (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)))) |
| 41 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑐(𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) |
| 42 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑒(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) |
| 43 | | breq1 5146 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑐 → (𝑒 < 𝑑 ↔ 𝑐 < 𝑑)) |
| 44 | | breq1 5146 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑐 → (𝑒 ∥ (♯‘𝐵) ↔ 𝑐 ∥ (♯‘𝐵))) |
| 45 | | eqeq2 2749 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑐 → (((od‘𝐺)‘𝑥) = 𝑒 ↔ ((od‘𝐺)‘𝑥) = 𝑐)) |
| 46 | 45 | rabbidv 3444 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑐 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) |
| 47 | 46 | neeq1d 3000 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑐 → ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅ ↔ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅)) |
| 48 | 44, 47 | anbi12d 632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑐 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) ↔ (𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅))) |
| 49 | 46 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑐 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐})) |
| 50 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑐 → (ϕ‘𝑒) = (ϕ‘𝑐)) |
| 51 | 49, 50 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑐 → ((♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒) ↔ (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) |
| 52 | 48, 51 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑐 → (((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒)) ↔ ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
| 53 | 43, 52 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = 𝑐 → ((𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) ↔ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
| 54 | 41, 42, 53 | cbvralw 3306 |
. . . . . . . . . . . . . 14
⊢
(∀𝑒 ∈
ℕ (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) ↔ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
| 55 | 54 | biimpi 216 |
. . . . . . . . . . . . 13
⊢
(∀𝑒 ∈
ℕ (𝑒 < 𝑑 → ((𝑒 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑒}) = (ϕ‘𝑒))) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
| 56 | 40, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
| 57 | 13, 56 | jca 511 |
. . . . . . . . . . 11
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → ((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
| 58 | | simprl 771 |
. . . . . . . . . . 11
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → 𝑑 ∥ (♯‘𝐵)) |
| 59 | 57, 58 | jca 511 |
. . . . . . . . . 10
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵))) |
| 60 | | simprr 773 |
. . . . . . . . . 10
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) |
| 61 | 59, 60 | jca 511 |
. . . . . . . . 9
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → ((((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) |
| 62 | | rabn0 4389 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) |
| 63 | 62 | biimpi 216 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅ → ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) |
| 64 | 63 | adantl 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) |
| 65 | | simp-4l 783 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) |
| 66 | | simp-4r 784 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝑑 ∥ (♯‘𝐵)) |
| 67 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝑎 ∈ 𝐵) |
| 68 | 65, 66, 67 | jca31 514 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ((((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵)) |
| 69 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ((od‘𝐺)‘𝑎) = 𝑑) |
| 70 | 68, 69 | jca 511 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → (((((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑)) |
| 71 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥𝐵 |
| 72 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑧𝐵 |
| 73 | | nfv 1914 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑧((od‘𝐺)‘𝑥) = 𝑑 |
| 74 | | nfv 1914 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥((od‘𝐺)‘𝑧) = 𝑑 |
| 75 | | fveqeq2 6915 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (((od‘𝐺)‘𝑥) = 𝑑 ↔ ((od‘𝐺)‘𝑧) = 𝑑)) |
| 76 | 71, 72, 73, 74, 75 | cbvrabw 3473 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} = {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑑} |
| 77 | 76 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} = {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑑}) |
| 78 | 77 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑑})) |
| 79 | | unitscyglem1.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = (Base‘𝐺) |
| 80 | | unitscyglem1.2 |
. . . . . . . . . . . . . . . 16
⊢ ↑ =
(.g‘𝐺) |
| 81 | | unitscyglem1.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 82 | 81 | ad5antr 734 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝐺 ∈ Grp) |
| 83 | | unitscyglem1.4 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 84 | 83 | ad5antr 734 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝐵 ∈ Fin) |
| 85 | | unitscyglem1.5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛) |
| 86 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑧(𝑛 ↑ 𝑥) = (0g‘𝐺) |
| 87 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑥(𝑛 ↑ 𝑧) = (0g‘𝐺) |
| 88 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 𝑧 → (𝑛 ↑ 𝑥) = (𝑛 ↑ 𝑧)) |
| 89 | 88 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑧 → ((𝑛 ↑ 𝑥) = (0g‘𝐺) ↔ (𝑛 ↑ 𝑧) = (0g‘𝐺))) |
| 90 | 71, 72, 86, 87, 89 | cbvrabw 3473 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)} = {𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)} |
| 91 | 90 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)} = {𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) |
| 92 | 91 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) = (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)})) |
| 93 | 92 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((♯‘{𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛 ↔ (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) ≤ 𝑛)) |
| 94 | 93 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (∀𝑛 ∈ ℕ
(♯‘{𝑥 ∈
𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛 ↔ ∀𝑛 ∈ ℕ (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) ≤ 𝑛)) |
| 95 | 94 | biimpd 229 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (∀𝑛 ∈ ℕ
(♯‘{𝑥 ∈
𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛 → ∀𝑛 ∈ ℕ (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) ≤ 𝑛)) |
| 96 | 85, 95 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) ≤ 𝑛) |
| 97 | 96 | ad5antr 734 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ∀𝑛 ∈ ℕ (♯‘{𝑧 ∈ 𝐵 ∣ (𝑛 ↑ 𝑧) = (0g‘𝐺)}) ≤ 𝑛) |
| 98 | | simp-5r 786 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝑑 ∈ ℕ) |
| 99 | | simpllr 776 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝑑 ∥ (♯‘𝐵)) |
| 100 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → 𝑎 ∈ 𝐵) |
| 101 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ((od‘𝐺)‘𝑎) = 𝑑) |
| 102 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑥((od‘𝐺)‘𝑧) = 𝑐 |
| 103 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑧((od‘𝐺)‘𝑥) = 𝑐 |
| 104 | | fveqeq2 6915 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑥 → (((od‘𝐺)‘𝑧) = 𝑐 ↔ ((od‘𝐺)‘𝑥) = 𝑐)) |
| 105 | 72, 71, 102, 103, 104 | cbvrabw 3473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} |
| 106 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ↔ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} = {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) |
| 107 | 105, 106 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} = {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} |
| 108 | 107 | neeq1i 3005 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅ ↔ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) |
| 109 | 108 | anbi2i 623 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) ↔ (𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅)) |
| 110 | 107 | fveq2i 6909 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(♯‘{𝑥
∈ 𝐵 ∣
((od‘𝐺)‘𝑥) = 𝑐}) = (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) |
| 111 | 110 | eqeq1i 2742 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((♯‘{𝑥
∈ 𝐵 ∣
((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐) ↔ (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)) |
| 112 | 109, 111 | imbi12i 350 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)) ↔ ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐))) |
| 113 | 112 | imbi2i 336 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) ↔ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
| 114 | 113 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) → (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
| 115 | 114 | ralimi 3083 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑐 ∈
ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
| 116 | 115 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
| 117 | 116 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
| 118 | 117 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
| 119 | 118 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐} ≠ ∅) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑐}) = (ϕ‘𝑐)))) |
| 120 | 79, 80, 82, 84, 97, 98, 99, 100, 101, 119 | unitscyglem2 42197 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → (♯‘{𝑧 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑧) = 𝑑}) = (ϕ‘𝑑)) |
| 121 | 78, 120 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) |
| 122 | 70, 121 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) ∧ 𝑎 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑎) = 𝑑) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) |
| 123 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎((od‘𝐺)‘𝑥) = 𝑑 |
| 124 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥((od‘𝐺)‘𝑎) = 𝑑 |
| 125 | | fveqeq2 6915 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (((od‘𝐺)‘𝑥) = 𝑑 ↔ ((od‘𝐺)‘𝑎) = 𝑑)) |
| 126 | 123, 124,
125 | cbvrexw 3307 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
𝐵 ((od‘𝐺)‘𝑥) = 𝑑 ↔ ∃𝑎 ∈ 𝐵 ((od‘𝐺)‘𝑎) = 𝑑) |
| 127 | 126 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
𝐵 ((od‘𝐺)‘𝑥) = 𝑑 → ∃𝑎 ∈ 𝐵 ((od‘𝐺)‘𝑎) = 𝑑) |
| 128 | 127 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) → ∃𝑎 ∈ 𝐵 ((od‘𝐺)‘𝑎) = 𝑑) |
| 129 | 122, 128 | r19.29a 3162 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) |
| 130 | 129 | ex 412 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ) ∧ ∀𝑐 ∈ ℕ (𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) → (∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) |
| 131 | 130 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝑑 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) |
| 132 | 64, 131 | mpd 15 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ) ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ∧ 𝑑 ∥ (♯‘𝐵)) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) |
| 133 | 61, 132 | syl 17 |
. . . . . . . 8
⊢ ((((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) ∧ (𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅)) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)) |
| 134 | 133 | ex 412 |
. . . . . . 7
⊢ (((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) ∧ 𝜑) → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) |
| 135 | 134 | ex 412 |
. . . . . 6
⊢ ((𝑑 ∈ ℕ ∧
∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))) → (𝜑 → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)))) |
| 136 | 135 | ex 412 |
. . . . 5
⊢ (𝑑 ∈ ℕ →
(∀𝑐 ∈ ℕ
(𝑐 < 𝑑 → (𝜑 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) → (𝜑 → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))))) |
| 137 | 10, 136 | indstr 12958 |
. . . 4
⊢ (𝑑 ∈ ℕ → (𝜑 → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)))) |
| 138 | 137 | com12 32 |
. . 3
⊢ (𝜑 → (𝑑 ∈ ℕ → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)))) |
| 139 | 138 | imp 406 |
. 2
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) |
| 140 | 139 | ralrimiva 3146 |
1
⊢ (𝜑 → ∀𝑑 ∈ ℕ ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) |