Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem2 Structured version   Visualization version   GIF version

Theorem unitscyglem2 42310
Description: Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
unitscyglem1.1 𝐵 = (Base‘𝐺)
unitscyglem1.2 = (.g𝐺)
unitscyglem1.3 (𝜑𝐺 ∈ Grp)
unitscyglem1.4 (𝜑𝐵 ∈ Fin)
unitscyglem1.5 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
unitscyglem2.1 (𝜑𝐷 ∈ ℕ)
unitscyglem2.2 (𝜑𝐷 ∥ (♯‘𝐵))
unitscyglem2.3 (𝜑𝐴𝐵)
unitscyglem2.4 (𝜑 → ((od‘𝐺)‘𝐴) = 𝐷)
unitscyglem2.5 (𝜑 → ∀𝑐 ∈ ℕ (𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))
Assertion
Ref Expression
unitscyglem2 (𝜑 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
Distinct variable groups:   ,𝑛,𝑥   𝐴,𝑛,𝑥   𝐵,𝑐,𝑥   𝐵,𝑛   𝐷,𝑐,𝑥   𝐺,𝑐,𝑥   𝑛,𝐺   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑛,𝑐)   𝐴(𝑐)   𝐷(𝑛)   (𝑐)

Proof of Theorem unitscyglem2
Dummy variables 𝑘 𝑙 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5096 . . . . . . . . . . . . . 14 (𝑎 = 𝑘 → (𝑎𝐷𝑘𝐷))
21elrab 3643 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ↔ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷))
32biimpi 216 . . . . . . . . . . . 12 (𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} → (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷))
43adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷))
54simpld 494 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ∈ (1...(𝐷 − 1)))
65elfzelzd 13427 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ∈ ℤ)
7 unitscyglem2.1 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℕ)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ∈ ℕ)
98nnzd 12501 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ∈ ℤ)
10 unitscyglem1.4 . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
11 hashcl 14265 . . . . . . . . . . . 12 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1210, 11syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) ∈ ℕ0)
1312adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (♯‘𝐵) ∈ ℕ0)
1413nn0zd 12500 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (♯‘𝐵) ∈ ℤ)
154simprd 495 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘𝐷)
16 unitscyglem2.2 . . . . . . . . . 10 (𝜑𝐷 ∥ (♯‘𝐵))
1716adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ∥ (♯‘𝐵))
186, 9, 14, 15, 17dvdstrd 16208 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ∥ (♯‘𝐵))
19 simpl 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → 𝜑)
202, 5sylan2br 595 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → 𝑘 ∈ (1...(𝐷 − 1)))
2119, 20jca 511 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → (𝜑𝑘 ∈ (1...(𝐷 − 1))))
222, 15sylan2br 595 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → 𝑘𝐷)
2321, 22jca 511 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → ((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷))
24 fveqeq2 6837 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐷 / 𝑘) 𝐴) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴)) = 𝑘))
25 unitscyglem1.1 . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐺)
26 unitscyglem1.2 . . . . . . . . . . . . . . . 16 = (.g𝐺)
27 unitscyglem1.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ Grp)
2827ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐺 ∈ Grp)
29 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝑙 · 𝑘) = 𝐷)
3029eqcomd 2739 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = (𝑙 · 𝑘))
3130oveq1d 7367 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) = ((𝑙 · 𝑘) / 𝑘))
32 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑙 ∈ ℕ)
3332nncnd 12148 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑙 ∈ ℂ)
34 elfzelz 13426 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...(𝐷 − 1)) → 𝑘 ∈ ℤ)
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐷 − 1))) → 𝑘 ∈ ℤ)
3635ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ∈ ℤ)
3736zcnd 12584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ∈ ℂ)
38 elfzle1 13429 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ (1...(𝐷 − 1)) → 1 ≤ 𝑘)
3938adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ (1...(𝐷 − 1))) → 1 ≤ 𝑘)
4035, 39jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (1...(𝐷 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
41 elnnz1 12504 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
4240, 41sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐷 − 1))) → 𝑘 ∈ ℕ)
4342adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → 𝑘 ∈ ℕ)
4443ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ∈ ℕ)
4544nnne0d 12182 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ≠ 0)
4633, 37, 45divcan4d 11910 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝑙 · 𝑘) / 𝑘) = 𝑙)
4731, 46eqtrd 2768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) = 𝑙)
4847, 32eqeltrd 2833 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈ ℕ)
4948nnnn0d 12449 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈ ℕ0)
5049nn0zd 12500 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈ ℤ)
51 unitscyglem2.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝐵)
5251ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐴𝐵)
5325, 26, 28, 50, 52mulgcld 19011 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) 𝐴) ∈ 𝐵)
547ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → 𝐷 ∈ ℕ)
5554ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 ∈ ℕ)
5655nncnd 12148 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 ∈ ℂ)
5756, 37, 45divcan1d 11905 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) · 𝑘) = 𝐷)
58 unitscyglem2.4 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((od‘𝐺)‘𝐴) = 𝐷)
5958ad4antr 732 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘𝐴) = 𝐷)
6059eqcomd 2739 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = ((od‘𝐺)‘𝐴))
61 eqid 2733 . . . . . . . . . . . . . . . . . . . . 21 (od‘𝐺) = (od‘𝐺)
6225, 61, 26odmulg 19470 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝐴𝐵 ∧ (𝐷 / 𝑘) ∈ ℤ) → ((od‘𝐺)‘𝐴) = (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))))
6328, 52, 50, 62syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘𝐴) = (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))))
6460, 63eqtrd 2768 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))))
6559oveq2d 7368 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) = ((𝐷 / 𝑘) gcd 𝐷))
6656, 37, 45divcan2d 11906 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝑘 · (𝐷 / 𝑘)) = 𝐷)
6766eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = (𝑘 · (𝐷 / 𝑘)))
6867oveq2d 7368 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd 𝐷) = ((𝐷 / 𝑘) gcd (𝑘 · (𝐷 / 𝑘))))
6949, 36gcdmultipled 16447 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd (𝑘 · (𝐷 / 𝑘))) = (𝐷 / 𝑘))
7068, 69eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd 𝐷) = (𝐷 / 𝑘))
7165, 70eqtrd 2768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) = (𝐷 / 𝑘))
7271oveq1d 7367 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))) = ((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))))
7364, 72eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = ((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))))
7457, 73eqtr2d 2769 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))) = ((𝐷 / 𝑘) · 𝑘))
7525, 61, 53odcld 19466 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴)) ∈ ℕ0)
7675nn0cnd 12451 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴)) ∈ ℂ)
7750zcnd 12584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈ ℂ)
7855nnne0d 12182 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 ≠ 0)
7956, 37, 78, 45divne0d 11920 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ≠ 0)
8076, 37, 77, 79mulcand 11757 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))) = ((𝐷 / 𝑘) · 𝑘) ↔ ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴)) = 𝑘))
8174, 80mpbid 232 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴)) = 𝑘)
8224, 53, 81elrabd 3645 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) 𝐴) ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
8382ne0d 4291 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
84 nndivides 16175 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑘𝐷 ↔ ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷))
8543, 54, 84syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → (𝑘𝐷 ↔ ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷))
8685biimpd 229 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → (𝑘𝐷 → ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷))
8786syldbl2 841 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷)
8883, 87r19.29a 3141 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
8923, 88syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
9089ex 412 . . . . . . . . . 10 (𝜑 → ((𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
9190adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ((𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
924, 91mpd 15 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
9318, 92jca 511 . . . . . . 7 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
945, 38syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 1 ≤ 𝑘)
956, 94jca 511 . . . . . . . . . . 11 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
9695, 41sylibr 234 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ∈ ℕ)
9796nnred 12147 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ∈ ℝ)
988nnred 12147 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ∈ ℝ)
99 1red 11120 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 1 ∈ ℝ)
10098, 99resubcld 11552 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝐷 − 1) ∈ ℝ)
101 elfzle2 13430 . . . . . . . . . 10 (𝑘 ∈ (1...(𝐷 − 1)) → 𝑘 ≤ (𝐷 − 1))
1025, 101syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ≤ (𝐷 − 1))
10398ltm1d 12061 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝐷 − 1) < 𝐷)
10497, 100, 98, 102, 103lelttrd 11278 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 < 𝐷)
105 breq1 5096 . . . . . . . . . 10 (𝑐 = 𝑘 → (𝑐 < 𝐷𝑘 < 𝐷))
106 breq1 5096 . . . . . . . . . . . 12 (𝑐 = 𝑘 → (𝑐 ∥ (♯‘𝐵) ↔ 𝑘 ∥ (♯‘𝐵)))
107 eqeq2 2745 . . . . . . . . . . . . . 14 (𝑐 = 𝑘 → (((od‘𝐺)‘𝑥) = 𝑐 ↔ ((od‘𝐺)‘𝑥) = 𝑘))
108107rabbidv 3403 . . . . . . . . . . . . 13 (𝑐 = 𝑘 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
109108neeq1d 2988 . . . . . . . . . . . 12 (𝑐 = 𝑘 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅ ↔ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
110106, 109anbi12d 632 . . . . . . . . . . 11 (𝑐 = 𝑘 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) ↔ (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)))
111108fveq2d 6832 . . . . . . . . . . . 12 (𝑐 = 𝑘 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
112 fveq2 6828 . . . . . . . . . . . 12 (𝑐 = 𝑘 → (ϕ‘𝑐) = (ϕ‘𝑘))
113111, 112eqeq12d 2749 . . . . . . . . . . 11 (𝑐 = 𝑘 → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
114110, 113imbi12d 344 . . . . . . . . . 10 (𝑐 = 𝑘 → (((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)) ↔ ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))))
115105, 114imbi12d 344 . . . . . . . . 9 (𝑐 = 𝑘 → ((𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) ↔ (𝑘 < 𝐷 → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))))
116 unitscyglem2.5 . . . . . . . . . 10 (𝜑 → ∀𝑐 ∈ ℕ (𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))
117116adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ∀𝑐 ∈ ℕ (𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))
118115, 117, 96rspcdva 3574 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝑘 < 𝐷 → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))))
119104, 118mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
12093, 119mpd 15 . . . . . 6 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))
121120sumeq2dv 15611 . . . . 5 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘))
122121eqcomd 2739 . . . 4 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
123122oveq1d 7367 . . 3 (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})))
124 elun 4102 . . . . . . . . . . . . 13 (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}) ↔ (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
125124biimpi 216 . . . . . . . . . . . 12 (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
126125adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
127 1zzd 12509 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 1 ∈ ℤ)
1287adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝐷 ∈ ℕ)
129128nnzd 12501 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝐷 ∈ ℤ)
130 elfzelz 13426 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (1...(𝐷 − 1)) → 𝑎 ∈ ℤ)
131130adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷) → 𝑎 ∈ ℤ)
132131adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎 ∈ ℤ)
133 elfzle1 13429 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (1...(𝐷 − 1)) → 1 ≤ 𝑎)
134133adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷) → 1 ≤ 𝑎)
135134adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 1 ≤ 𝑎)
136132zred 12583 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎 ∈ ℝ)
137128nnred 12147 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝐷 ∈ ℝ)
138 1red 11120 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 1 ∈ ℝ)
139137, 138resubcld 11552 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → (𝐷 − 1) ∈ ℝ)
140 elfzle2 13430 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (1...(𝐷 − 1)) → 𝑎 ≤ (𝐷 − 1))
141140adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷) → 𝑎 ≤ (𝐷 − 1))
142141adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎 ≤ (𝐷 − 1))
143137ltm1d 12061 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → (𝐷 − 1) < 𝐷)
144136, 139, 137, 142, 143lelttrd 11278 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎 < 𝐷)
145136, 137, 144ltled 11268 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎𝐷)
146127, 129, 132, 135, 145elfzd 13417 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎 ∈ (1...𝐷))
147146rabss3d 4030 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ⊆ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
148147sseld 3929 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
149148imp 406 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
150 elsni 4592 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝐷} → 𝑦 = 𝐷)
151150adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ {𝐷}) → 𝑦 = 𝐷)
152 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 = 𝐷) → 𝑦 = 𝐷)
153 breq1 5096 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐷 → (𝑎𝐷𝐷𝐷))
154 1zzd 12509 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℤ)
1557nnzd 12501 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 ∈ ℤ)
1567nnge1d 12180 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐷)
1577nnred 12147 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐷 ∈ ℝ)
158157leidd 11690 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷𝐷)
159154, 155, 155, 156, 158elfzd 13417 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ (1...𝐷))
160 iddvds 16182 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ ℤ → 𝐷𝐷)
161155, 160syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷𝐷)
162153, 159, 161elrabd 3645 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
163162adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 = 𝐷) → 𝐷 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
164152, 163eqeltrd 2833 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 = 𝐷) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
165164ex 412 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 = 𝐷𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
166165adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ {𝐷}) → (𝑦 = 𝐷𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
167151, 166mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
168149, 167jaodan 959 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷})) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
169168ex 412 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
170169adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})) → ((𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
171126, 170mpd 15 . . . . . . . . . 10 ((𝜑𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
172171ex 412 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
173 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → 𝑦 = 𝐷)
174 eqidd 2734 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → 𝐷 = 𝐷)
1757ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → 𝐷 ∈ ℕ)
176 elsng 4589 . . . . . . . . . . . . . . . 16 (𝐷 ∈ ℕ → (𝐷 ∈ {𝐷} ↔ 𝐷 = 𝐷))
177175, 176syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → (𝐷 ∈ {𝐷} ↔ 𝐷 = 𝐷))
178174, 177mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → 𝐷 ∈ {𝐷})
179173, 178eqeltrd 2833 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → 𝑦 ∈ {𝐷})
180179olcd 874 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
181 breq1 5096 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → (𝑎𝐷𝑦𝐷))
182181elrab 3643 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} ↔ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷))
183182biimpi 216 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} → (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷))
184183adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) → (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷))
185184adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷))
186 1zzd 12509 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 1 ∈ ℤ)
187155ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝐷 ∈ ℤ)
188187, 186zsubcld 12588 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → (𝐷 − 1) ∈ ℤ)
189 elfzelz 13426 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1...𝐷) → 𝑦 ∈ ℤ)
190189adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷) → 𝑦 ∈ ℤ)
191190adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 ∈ ℤ)
192 elfzle1 13429 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1...𝐷) → 1 ≤ 𝑦)
193192adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷) → 1 ≤ 𝑦)
194193adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 1 ≤ 𝑦)
195 elfzle2 13430 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝐷) → 𝑦𝐷)
196195adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷) → 𝑦𝐷)
197196adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦𝐷)
198 neqne 2937 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 = 𝐷𝑦𝐷)
199198adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → 𝑦𝐷)
200199necomd 2984 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → 𝐷𝑦)
201200adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝐷𝑦)
202197, 201jca 511 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → (𝑦𝐷𝐷𝑦))
203191zred 12583 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 ∈ ℝ)
204157ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝐷 ∈ ℝ)
205203, 204ltlend 11265 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → (𝑦 < 𝐷 ↔ (𝑦𝐷𝐷𝑦)))
206202, 205mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 < 𝐷)
2077ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝐷 ∈ ℕ)
208207nnzd 12501 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝐷 ∈ ℤ)
209191, 208zltlem1d 12532 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → (𝑦 < 𝐷𝑦 ≤ (𝐷 − 1)))
210206, 209mpbid 232 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 ≤ (𝐷 − 1))
211186, 188, 191, 194, 210elfzd 13417 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 ∈ (1...(𝐷 − 1)))
212 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦𝐷)
213181, 211, 212elrabd 3645 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷})
214213ex 412 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → ((𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷) → 𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}))
215185, 214mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → 𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷})
216215orcd 873 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
217180, 216pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
218217, 124sylibr 234 . . . . . . . . . 10 ((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) → 𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}))
219218ex 412 . . . . . . . . 9 (𝜑 → (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} → 𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})))
220172, 219impbid 212 . . . . . . . 8 (𝜑 → (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}) ↔ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
221220eqrdv 2731 . . . . . . 7 (𝜑 → ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}) = {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
222221sumeq1d 15609 . . . . . 6 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (ϕ‘𝑘))
223 phisum 16704 . . . . . . . . 9 (𝐷 ∈ ℕ → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} (ϕ‘𝑘) = 𝐷)
2247, 223syl 17 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} (ϕ‘𝑘) = 𝐷)
225 eqcom 2740 . . . . . . . . . . . . . . . . . 18 (((od‘𝐺)‘𝐴) = 𝐷𝐷 = ((od‘𝐺)‘𝐴))
226225imbi2i 336 . . . . . . . . . . . . . . . . 17 ((𝜑 → ((od‘𝐺)‘𝐴) = 𝐷) ↔ (𝜑𝐷 = ((od‘𝐺)‘𝐴)))
22758, 226mpbi 230 . . . . . . . . . . . . . . . 16 (𝜑𝐷 = ((od‘𝐺)‘𝐴))
228227oveq1d 7367 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 𝑥) = (((od‘𝐺)‘𝐴) 𝑥))
229228eqeq1d 2735 . . . . . . . . . . . . . 14 (𝜑 → ((𝐷 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)))
230229rabbidv 3403 . . . . . . . . . . . . 13 (𝜑 → {𝑥𝐵 ∣ (𝐷 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
231230fveq2d 6832 . . . . . . . . . . . 12 (𝜑 → (♯‘{𝑥𝐵 ∣ (𝐷 𝑥) = (0g𝐺)}) = (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
232 unitscyglem1.5 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
23325, 26, 27, 10, 232, 51unitscyglem1 42309 . . . . . . . . . . . 12 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
234231, 233eqtrd 2768 . . . . . . . . . . 11 (𝜑 → (♯‘{𝑥𝐵 ∣ (𝐷 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
235234, 58eqtr2d 2769 . . . . . . . . . 10 (𝜑𝐷 = (♯‘{𝑥𝐵 ∣ (𝐷 𝑥) = (0g𝐺)}))
23625, 26, 27, 10, 7grpods 42308 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ (𝐷 𝑥) = (0g𝐺)}))
237235, 236eqtr4d 2771 . . . . . . . . 9 (𝜑𝐷 = Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
238221eqcomd 2739 . . . . . . . . . 10 (𝜑 → {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} = ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}))
239238sumeq1d 15609 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
240237, 239eqtrd 2768 . . . . . . . 8 (𝜑𝐷 = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
241224, 240eqtr2d 2769 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} (ϕ‘𝑘))
242 1zzd 12509 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 1 ∈ ℤ)
243155adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝐷 ∈ ℤ)
244181elrab 3643 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} ↔ (𝑦 ∈ ℕ ∧ 𝑦𝐷))
245244biimpi 216 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} → (𝑦 ∈ ℕ ∧ 𝑦𝐷))
246245adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → (𝑦 ∈ ℕ ∧ 𝑦𝐷))
247246simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦 ∈ ℕ)
248247nnzd 12501 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦 ∈ ℤ)
249247nnge1d 12180 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 1 ≤ 𝑦)
250246simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦𝐷)
2517adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝐷 ∈ ℕ)
252 dvdsle 16223 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑦𝐷𝑦𝐷))
253248, 251, 252syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → (𝑦𝐷𝑦𝐷))
254250, 253mpd 15 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦𝐷)
255242, 243, 248, 249, 254elfzd 13417 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦 ∈ (1...𝐷))
256181, 255, 250elrabd 3645 . . . . . . . . . . 11 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
257256ex 412 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
258 elfzelz 13426 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (1...𝐷) → 𝑎 ∈ ℤ)
259 elfzle1 13429 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (1...𝐷) → 1 ≤ 𝑎)
260258, 259jca 511 . . . . . . . . . . . . . . 15 (𝑎 ∈ (1...𝐷) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
261260adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ (1...𝐷) ∧ 𝑎𝐷) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
262261adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (1...𝐷) ∧ 𝑎𝐷)) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
263 elnnz1 12504 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
264262, 263sylibr 234 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (1...𝐷) ∧ 𝑎𝐷)) → 𝑎 ∈ ℕ)
265264rabss3d 4030 . . . . . . . . . . 11 (𝜑 → {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} ⊆ {𝑎 ∈ ℕ ∣ 𝑎𝐷})
266265sseld 3929 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} → 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}))
267257, 266impbid 212 . . . . . . . . 9 (𝜑 → (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} ↔ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
268267eqrdv 2731 . . . . . . . 8 (𝜑 → {𝑎 ∈ ℕ ∣ 𝑎𝐷} = {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
269268sumeq1d 15609 . . . . . . 7 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} (ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (ϕ‘𝑘))
270241, 269eqtr2d 2769 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (ϕ‘𝑘) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
271222, 270eqtrd 2768 . . . . 5 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(ϕ‘𝑘) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
272 nfv 1915 . . . . . 6 𝑘𝜑
273 nfcv 2895 . . . . . 6 𝑘(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
274 fzfid 13882 . . . . . . 7 (𝜑 → (1...(𝐷 − 1)) ∈ Fin)
275 ssrab2 4029 . . . . . . . 8 {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ⊆ (1...(𝐷 − 1))
276275a1i 11 . . . . . . 7 (𝜑 → {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ⊆ (1...(𝐷 − 1)))
277274, 276ssfid 9160 . . . . . 6 (𝜑 → {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∈ Fin)
278153elrab 3643 . . . . . . . . . . . 12 (𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ↔ (𝐷 ∈ (1...(𝐷 − 1)) ∧ 𝐷𝐷))
279278biimpi 216 . . . . . . . . . . 11 (𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} → (𝐷 ∈ (1...(𝐷 − 1)) ∧ 𝐷𝐷))
280279simpld 494 . . . . . . . . . 10 (𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} → 𝐷 ∈ (1...(𝐷 − 1)))
281280adantl 481 . . . . . . . . 9 ((𝜑𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ∈ (1...(𝐷 − 1)))
282 elfzle2 13430 . . . . . . . . 9 (𝐷 ∈ (1...(𝐷 − 1)) → 𝐷 ≤ (𝐷 − 1))
283281, 282syl 17 . . . . . . . 8 ((𝜑𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ≤ (𝐷 − 1))
284157ltm1d 12061 . . . . . . . . . 10 (𝜑 → (𝐷 − 1) < 𝐷)
285 1red 11120 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
286157, 285resubcld 11552 . . . . . . . . . . 11 (𝜑 → (𝐷 − 1) ∈ ℝ)
287286, 157ltnled 11267 . . . . . . . . . 10 (𝜑 → ((𝐷 − 1) < 𝐷 ↔ ¬ 𝐷 ≤ (𝐷 − 1)))
288284, 287mpbid 232 . . . . . . . . 9 (𝜑 → ¬ 𝐷 ≤ (𝐷 − 1))
289288adantr 480 . . . . . . . 8 ((𝜑𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ¬ 𝐷 ≤ (𝐷 − 1))
290283, 289pm2.21dd 195 . . . . . . 7 ((𝜑𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷})
291 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷})
292290, 291pm2.61dan 812 . . . . . 6 (𝜑 → ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷})
29310adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐵 ∈ Fin)
294 ssrab2 4029 . . . . . . . . . 10 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵
295294a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
296293, 295ssfid 9160 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
297 hashcl 14265 . . . . . . . 8 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
298296, 297syl 17 . . . . . . 7 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
299298nn0cnd 12451 . . . . . 6 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℂ)
300 eqeq2 2745 . . . . . . . 8 (𝑘 = 𝐷 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝐷))
301300rabbidv 3403 . . . . . . 7 (𝑘 = 𝐷 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
302301fveq2d 6832 . . . . . 6 (𝑘 = 𝐷 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))
303 ssrab2 4029 . . . . . . . . . 10 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ⊆ 𝐵
304303a1i 11 . . . . . . . . 9 (𝜑 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ⊆ 𝐵)
30510, 304ssfid 9160 . . . . . . . 8 (𝜑 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ∈ Fin)
306 hashcl 14265 . . . . . . . 8 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) ∈ ℕ0)
307305, 306syl 17 . . . . . . 7 (𝜑 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) ∈ ℕ0)
308307nn0cnd 12451 . . . . . 6 (𝜑 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) ∈ ℂ)
309272, 273, 277, 7, 292, 299, 302, 308fsumsplitsn 15653 . . . . 5 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})))
310271, 309eqtr2d 2769 . . . 4 (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(ϕ‘𝑘))
311 nfcv 2895 . . . . 5 𝑘(ϕ‘𝐷)
312120, 299eqeltrrd 2834 . . . . 5 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (ϕ‘𝑘) ∈ ℂ)
313 fveq2 6828 . . . . 5 (𝑘 = 𝐷 → (ϕ‘𝑘) = (ϕ‘𝐷))
3147phicld 16685 . . . . . 6 (𝜑 → (ϕ‘𝐷) ∈ ℕ)
315314nncnd 12148 . . . . 5 (𝜑 → (ϕ‘𝐷) ∈ ℂ)
316272, 311, 277, 7, 292, 312, 313, 315fsumsplitsn 15653 . . . 4 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(ϕ‘𝑘) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (ϕ‘𝐷)))
317310, 316eqtrd 2768 . . 3 (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (ϕ‘𝐷)))
318123, 317eqtrd 2768 . 2 (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (ϕ‘𝐷)))
319277, 312fsumcl 15642 . . 3 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) ∈ ℂ)
320319, 308, 315addcand 11323 . 2 (𝜑 → ((Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (ϕ‘𝐷)) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)))
321318, 320mpbid 232 1 (𝜑 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  cun 3896  wss 3898  c0 4282  {csn 4575   class class class wbr 5093  cfv 6486  (class class class)co 7352  Fincfn 8875  cc 11011  cr 11012  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  cn 12132  0cn0 12388  cz 12475  ...cfz 13409  chash 14239  Σcsu 15595  cdvds 16165   gcd cgcd 16407  ϕcphi 16677  Basecbs 17122  0gc0g 17345  Grpcgrp 18848  .gcmg 18982  odcod 19438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-dvds 16166  df-gcd 16408  df-phi 16679  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-od 19442
This theorem is referenced by:  unitscyglem3  42311
  Copyright terms: Public domain W3C validator