Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem2 Structured version   Visualization version   GIF version

Theorem unitscyglem2 42172
Description: Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025.)
Hypotheses
Ref Expression
unitscyglem1.1 𝐵 = (Base‘𝐺)
unitscyglem1.2 = (.g𝐺)
unitscyglem1.3 (𝜑𝐺 ∈ Grp)
unitscyglem1.4 (𝜑𝐵 ∈ Fin)
unitscyglem1.5 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
unitscyglem2.1 (𝜑𝐷 ∈ ℕ)
unitscyglem2.2 (𝜑𝐷 ∥ (♯‘𝐵))
unitscyglem2.3 (𝜑𝐴𝐵)
unitscyglem2.4 (𝜑 → ((od‘𝐺)‘𝐴) = 𝐷)
unitscyglem2.5 (𝜑 → ∀𝑐 ∈ ℕ (𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))
Assertion
Ref Expression
unitscyglem2 (𝜑 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
Distinct variable groups:   ,𝑛,𝑥   𝐴,𝑛,𝑥   𝐵,𝑐,𝑥   𝐵,𝑛   𝐷,𝑐,𝑥   𝐺,𝑐,𝑥   𝑛,𝐺   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑛,𝑐)   𝐴(𝑐)   𝐷(𝑛)   (𝑐)

Proof of Theorem unitscyglem2
Dummy variables 𝑘 𝑙 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5098 . . . . . . . . . . . . . 14 (𝑎 = 𝑘 → (𝑎𝐷𝑘𝐷))
21elrab 3650 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ↔ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷))
32biimpi 216 . . . . . . . . . . . 12 (𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} → (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷))
43adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷))
54simpld 494 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ∈ (1...(𝐷 − 1)))
65elfzelzd 13446 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ∈ ℤ)
7 unitscyglem2.1 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℕ)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ∈ ℕ)
98nnzd 12516 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ∈ ℤ)
10 unitscyglem1.4 . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
11 hashcl 14281 . . . . . . . . . . . 12 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1210, 11syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) ∈ ℕ0)
1312adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (♯‘𝐵) ∈ ℕ0)
1413nn0zd 12515 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (♯‘𝐵) ∈ ℤ)
154simprd 495 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘𝐷)
16 unitscyglem2.2 . . . . . . . . . 10 (𝜑𝐷 ∥ (♯‘𝐵))
1716adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ∥ (♯‘𝐵))
186, 9, 14, 15, 17dvdstrd 16224 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ∥ (♯‘𝐵))
19 simpl 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → 𝜑)
202, 5sylan2br 595 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → 𝑘 ∈ (1...(𝐷 − 1)))
2119, 20jca 511 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → (𝜑𝑘 ∈ (1...(𝐷 − 1))))
222, 15sylan2br 595 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → 𝑘𝐷)
2321, 22jca 511 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → ((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷))
24 fveqeq2 6835 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐷 / 𝑘) 𝐴) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴)) = 𝑘))
25 unitscyglem1.1 . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐺)
26 unitscyglem1.2 . . . . . . . . . . . . . . . 16 = (.g𝐺)
27 unitscyglem1.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ Grp)
2827ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐺 ∈ Grp)
29 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝑙 · 𝑘) = 𝐷)
3029eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = (𝑙 · 𝑘))
3130oveq1d 7368 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) = ((𝑙 · 𝑘) / 𝑘))
32 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑙 ∈ ℕ)
3332nncnd 12162 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑙 ∈ ℂ)
34 elfzelz 13445 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...(𝐷 − 1)) → 𝑘 ∈ ℤ)
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (1...(𝐷 − 1))) → 𝑘 ∈ ℤ)
3635ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ∈ ℤ)
3736zcnd 12599 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ∈ ℂ)
38 elfzle1 13448 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ (1...(𝐷 − 1)) → 1 ≤ 𝑘)
3938adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ (1...(𝐷 − 1))) → 1 ≤ 𝑘)
4035, 39jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (1...(𝐷 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
41 elnnz1 12519 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
4240, 41sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (1...(𝐷 − 1))) → 𝑘 ∈ ℕ)
4342adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → 𝑘 ∈ ℕ)
4443ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ∈ ℕ)
4544nnne0d 12196 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ≠ 0)
4633, 37, 45divcan4d 11924 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝑙 · 𝑘) / 𝑘) = 𝑙)
4731, 46eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) = 𝑙)
4847, 32eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈ ℕ)
4948nnnn0d 12463 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈ ℕ0)
5049nn0zd 12515 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈ ℤ)
51 unitscyglem2.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝐵)
5251ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐴𝐵)
5325, 26, 28, 50, 52mulgcld 18993 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) 𝐴) ∈ 𝐵)
547ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → 𝐷 ∈ ℕ)
5554ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 ∈ ℕ)
5655nncnd 12162 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 ∈ ℂ)
5756, 37, 45divcan1d 11919 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) · 𝑘) = 𝐷)
58 unitscyglem2.4 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((od‘𝐺)‘𝐴) = 𝐷)
5958ad4antr 732 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘𝐴) = 𝐷)
6059eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = ((od‘𝐺)‘𝐴))
61 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (od‘𝐺) = (od‘𝐺)
6225, 61, 26odmulg 19453 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝐴𝐵 ∧ (𝐷 / 𝑘) ∈ ℤ) → ((od‘𝐺)‘𝐴) = (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))))
6328, 52, 50, 62syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘𝐴) = (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))))
6460, 63eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))))
6559oveq2d 7369 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) = ((𝐷 / 𝑘) gcd 𝐷))
6656, 37, 45divcan2d 11920 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝑘 · (𝐷 / 𝑘)) = 𝐷)
6766eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = (𝑘 · (𝐷 / 𝑘)))
6867oveq2d 7369 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd 𝐷) = ((𝐷 / 𝑘) gcd (𝑘 · (𝐷 / 𝑘))))
6949, 36gcdmultipled 16463 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd (𝑘 · (𝐷 / 𝑘))) = (𝐷 / 𝑘))
7068, 69eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd 𝐷) = (𝐷 / 𝑘))
7165, 70eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) = (𝐷 / 𝑘))
7271oveq1d 7368 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))) = ((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))))
7364, 72eqtrd 2764 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = ((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))))
7457, 73eqtr2d 2765 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))) = ((𝐷 / 𝑘) · 𝑘))
7525, 61, 53odcld 19449 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴)) ∈ ℕ0)
7675nn0cnd 12465 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴)) ∈ ℂ)
7750zcnd 12599 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈ ℂ)
7855nnne0d 12196 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 ≠ 0)
7956, 37, 78, 45divne0d 11934 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ≠ 0)
8076, 37, 77, 79mulcand 11771 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴))) = ((𝐷 / 𝑘) · 𝑘) ↔ ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴)) = 𝑘))
8174, 80mpbid 232 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘((𝐷 / 𝑘) 𝐴)) = 𝑘)
8224, 53, 81elrabd 3652 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) 𝐴) ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
8382ne0d 4295 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
84 nndivides 16191 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑘𝐷 ↔ ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷))
8543, 54, 84syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → (𝑘𝐷 ↔ ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷))
8685biimpd 229 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → (𝑘𝐷 → ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷))
8786syldbl2 841 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷)
8883, 87r19.29a 3137 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘𝐷) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
8923, 88syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷)) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
9089ex 412 . . . . . . . . . 10 (𝜑 → ((𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
9190adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ((𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘𝐷) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
924, 91mpd 15 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
9318, 92jca 511 . . . . . . 7 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
945, 38syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 1 ≤ 𝑘)
956, 94jca 511 . . . . . . . . . . 11 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
9695, 41sylibr 234 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ∈ ℕ)
9796nnred 12161 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ∈ ℝ)
988nnred 12161 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ∈ ℝ)
99 1red 11135 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 1 ∈ ℝ)
10098, 99resubcld 11566 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝐷 − 1) ∈ ℝ)
101 elfzle2 13449 . . . . . . . . . 10 (𝑘 ∈ (1...(𝐷 − 1)) → 𝑘 ≤ (𝐷 − 1))
1025, 101syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 ≤ (𝐷 − 1))
10398ltm1d 12075 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝐷 − 1) < 𝐷)
10497, 100, 98, 102, 103lelttrd 11292 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑘 < 𝐷)
105 breq1 5098 . . . . . . . . . 10 (𝑐 = 𝑘 → (𝑐 < 𝐷𝑘 < 𝐷))
106 breq1 5098 . . . . . . . . . . . 12 (𝑐 = 𝑘 → (𝑐 ∥ (♯‘𝐵) ↔ 𝑘 ∥ (♯‘𝐵)))
107 eqeq2 2741 . . . . . . . . . . . . . 14 (𝑐 = 𝑘 → (((od‘𝐺)‘𝑥) = 𝑐 ↔ ((od‘𝐺)‘𝑥) = 𝑘))
108107rabbidv 3404 . . . . . . . . . . . . 13 (𝑐 = 𝑘 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
109108neeq1d 2984 . . . . . . . . . . . 12 (𝑐 = 𝑘 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅ ↔ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
110106, 109anbi12d 632 . . . . . . . . . . 11 (𝑐 = 𝑘 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) ↔ (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)))
111108fveq2d 6830 . . . . . . . . . . . 12 (𝑐 = 𝑘 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
112 fveq2 6826 . . . . . . . . . . . 12 (𝑐 = 𝑘 → (ϕ‘𝑐) = (ϕ‘𝑘))
113111, 112eqeq12d 2745 . . . . . . . . . . 11 (𝑐 = 𝑘 → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
114110, 113imbi12d 344 . . . . . . . . . 10 (𝑐 = 𝑘 → (((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)) ↔ ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))))
115105, 114imbi12d 344 . . . . . . . . 9 (𝑐 = 𝑘 → ((𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) ↔ (𝑘 < 𝐷 → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))))
116 unitscyglem2.5 . . . . . . . . . 10 (𝜑 → ∀𝑐 ∈ ℕ (𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))
117116adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ∀𝑐 ∈ ℕ (𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))
118115, 117, 96rspcdva 3580 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (𝑘 < 𝐷 → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))))
119104, 118mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
12093, 119mpd 15 . . . . . 6 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))
121120sumeq2dv 15627 . . . . 5 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘))
122121eqcomd 2735 . . . 4 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
123122oveq1d 7368 . . 3 (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})))
124 elun 4106 . . . . . . . . . . . . 13 (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}) ↔ (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
125124biimpi 216 . . . . . . . . . . . 12 (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
126125adantl 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
127 1zzd 12524 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 1 ∈ ℤ)
1287adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝐷 ∈ ℕ)
129128nnzd 12516 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝐷 ∈ ℤ)
130 elfzelz 13445 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (1...(𝐷 − 1)) → 𝑎 ∈ ℤ)
131130adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷) → 𝑎 ∈ ℤ)
132131adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎 ∈ ℤ)
133 elfzle1 13448 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (1...(𝐷 − 1)) → 1 ≤ 𝑎)
134133adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷) → 1 ≤ 𝑎)
135134adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 1 ≤ 𝑎)
136132zred 12598 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎 ∈ ℝ)
137128nnred 12161 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝐷 ∈ ℝ)
138 1red 11135 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 1 ∈ ℝ)
139137, 138resubcld 11566 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → (𝐷 − 1) ∈ ℝ)
140 elfzle2 13449 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (1...(𝐷 − 1)) → 𝑎 ≤ (𝐷 − 1))
141140adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷) → 𝑎 ≤ (𝐷 − 1))
142141adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎 ≤ (𝐷 − 1))
143137ltm1d 12075 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → (𝐷 − 1) < 𝐷)
144136, 139, 137, 142, 143lelttrd 11292 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎 < 𝐷)
145136, 137, 144ltled 11282 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎𝐷)
146127, 129, 132, 135, 145elfzd 13436 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎𝐷)) → 𝑎 ∈ (1...𝐷))
147146rabss3d 4034 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ⊆ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
148147sseld 3936 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
149148imp 406 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
150 elsni 4596 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝐷} → 𝑦 = 𝐷)
151150adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ {𝐷}) → 𝑦 = 𝐷)
152 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 = 𝐷) → 𝑦 = 𝐷)
153 breq1 5098 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐷 → (𝑎𝐷𝐷𝐷))
154 1zzd 12524 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℤ)
1557nnzd 12516 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 ∈ ℤ)
1567nnge1d 12194 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐷)
1577nnred 12161 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐷 ∈ ℝ)
158157leidd 11704 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷𝐷)
159154, 155, 155, 156, 158elfzd 13436 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ (1...𝐷))
160 iddvds 16198 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ ℤ → 𝐷𝐷)
161155, 160syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷𝐷)
162153, 159, 161elrabd 3652 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
163162adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 = 𝐷) → 𝐷 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
164152, 163eqeltrd 2828 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 = 𝐷) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
165164ex 412 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 = 𝐷𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
166165adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ {𝐷}) → (𝑦 = 𝐷𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
167151, 166mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
168149, 167jaodan 959 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷})) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
169168ex 412 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
170169adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})) → ((𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
171126, 170mpd 15 . . . . . . . . . 10 ((𝜑𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
172171ex 412 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
173 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → 𝑦 = 𝐷)
174 eqidd 2730 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → 𝐷 = 𝐷)
1757ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → 𝐷 ∈ ℕ)
176 elsng 4593 . . . . . . . . . . . . . . . 16 (𝐷 ∈ ℕ → (𝐷 ∈ {𝐷} ↔ 𝐷 = 𝐷))
177175, 176syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → (𝐷 ∈ {𝐷} ↔ 𝐷 = 𝐷))
178174, 177mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → 𝐷 ∈ {𝐷})
179173, 178eqeltrd 2828 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → 𝑦 ∈ {𝐷})
180179olcd 874 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ 𝑦 = 𝐷) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
181 breq1 5098 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → (𝑎𝐷𝑦𝐷))
182181elrab 3650 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} ↔ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷))
183182biimpi 216 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} → (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷))
184183adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) → (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷))
185184adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷))
186 1zzd 12524 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 1 ∈ ℤ)
187155ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝐷 ∈ ℤ)
188187, 186zsubcld 12603 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → (𝐷 − 1) ∈ ℤ)
189 elfzelz 13445 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1...𝐷) → 𝑦 ∈ ℤ)
190189adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷) → 𝑦 ∈ ℤ)
191190adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 ∈ ℤ)
192 elfzle1 13448 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1...𝐷) → 1 ≤ 𝑦)
193192adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷) → 1 ≤ 𝑦)
194193adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 1 ≤ 𝑦)
195 elfzle2 13449 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝐷) → 𝑦𝐷)
196195adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷) → 𝑦𝐷)
197196adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦𝐷)
198 neqne 2933 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 = 𝐷𝑦𝐷)
199198adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → 𝑦𝐷)
200199necomd 2980 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → 𝐷𝑦)
201200adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝐷𝑦)
202197, 201jca 511 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → (𝑦𝐷𝐷𝑦))
203191zred 12598 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 ∈ ℝ)
204157ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝐷 ∈ ℝ)
205203, 204ltlend 11279 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → (𝑦 < 𝐷 ↔ (𝑦𝐷𝐷𝑦)))
206202, 205mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 < 𝐷)
2077ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝐷 ∈ ℕ)
208207nnzd 12516 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝐷 ∈ ℤ)
209191, 208zltlem1d 12547 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → (𝑦 < 𝐷𝑦 ≤ (𝐷 − 1)))
210206, 209mpbid 232 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 ≤ (𝐷 − 1))
211186, 188, 191, 194, 210elfzd 13436 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 ∈ (1...(𝐷 − 1)))
212 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦𝐷)
213181, 211, 212elrabd 3652 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷)) → 𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷})
214213ex 412 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → ((𝑦 ∈ (1...𝐷) ∧ 𝑦𝐷) → 𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}))
215185, 214mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → 𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷})
216215orcd 873 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) ∧ ¬ 𝑦 = 𝐷) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
217180, 216pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∨ 𝑦 ∈ {𝐷}))
218217, 124sylibr 234 . . . . . . . . . 10 ((𝜑𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}) → 𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}))
219218ex 412 . . . . . . . . 9 (𝜑 → (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} → 𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})))
220172, 219impbid 212 . . . . . . . 8 (𝜑 → (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}) ↔ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
221220eqrdv 2727 . . . . . . 7 (𝜑 → ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}) = {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
222221sumeq1d 15625 . . . . . 6 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (ϕ‘𝑘))
223 phisum 16720 . . . . . . . . 9 (𝐷 ∈ ℕ → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} (ϕ‘𝑘) = 𝐷)
2247, 223syl 17 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} (ϕ‘𝑘) = 𝐷)
225 eqcom 2736 . . . . . . . . . . . . . . . . . 18 (((od‘𝐺)‘𝐴) = 𝐷𝐷 = ((od‘𝐺)‘𝐴))
226225imbi2i 336 . . . . . . . . . . . . . . . . 17 ((𝜑 → ((od‘𝐺)‘𝐴) = 𝐷) ↔ (𝜑𝐷 = ((od‘𝐺)‘𝐴)))
22758, 226mpbi 230 . . . . . . . . . . . . . . . 16 (𝜑𝐷 = ((od‘𝐺)‘𝐴))
228227oveq1d 7368 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 𝑥) = (((od‘𝐺)‘𝐴) 𝑥))
229228eqeq1d 2731 . . . . . . . . . . . . . 14 (𝜑 → ((𝐷 𝑥) = (0g𝐺) ↔ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)))
230229rabbidv 3404 . . . . . . . . . . . . 13 (𝜑 → {𝑥𝐵 ∣ (𝐷 𝑥) = (0g𝐺)} = {𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)})
231230fveq2d 6830 . . . . . . . . . . . 12 (𝜑 → (♯‘{𝑥𝐵 ∣ (𝐷 𝑥) = (0g𝐺)}) = (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}))
232 unitscyglem1.5 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
23325, 26, 27, 10, 232, 51unitscyglem1 42171 . . . . . . . . . . . 12 (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
234231, 233eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (♯‘{𝑥𝐵 ∣ (𝐷 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
235234, 58eqtr2d 2765 . . . . . . . . . 10 (𝜑𝐷 = (♯‘{𝑥𝐵 ∣ (𝐷 𝑥) = (0g𝐺)}))
23625, 26, 27, 10, 7grpods 42170 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ (𝐷 𝑥) = (0g𝐺)}))
237235, 236eqtr4d 2767 . . . . . . . . 9 (𝜑𝐷 = Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
238221eqcomd 2735 . . . . . . . . . 10 (𝜑 → {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} = ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷}))
239238sumeq1d 15625 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
240237, 239eqtrd 2764 . . . . . . . 8 (𝜑𝐷 = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
241224, 240eqtr2d 2765 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} (ϕ‘𝑘))
242 1zzd 12524 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 1 ∈ ℤ)
243155adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝐷 ∈ ℤ)
244181elrab 3650 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} ↔ (𝑦 ∈ ℕ ∧ 𝑦𝐷))
245244biimpi 216 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} → (𝑦 ∈ ℕ ∧ 𝑦𝐷))
246245adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → (𝑦 ∈ ℕ ∧ 𝑦𝐷))
247246simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦 ∈ ℕ)
248247nnzd 12516 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦 ∈ ℤ)
249247nnge1d 12194 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 1 ≤ 𝑦)
250246simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦𝐷)
2517adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝐷 ∈ ℕ)
252 dvdsle 16239 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑦𝐷𝑦𝐷))
253248, 251, 252syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → (𝑦𝐷𝑦𝐷))
254250, 253mpd 15 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦𝐷)
255242, 243, 248, 249, 254elfzd 13436 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦 ∈ (1...𝐷))
256181, 255, 250elrabd 3652 . . . . . . . . . . 11 ((𝜑𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
257256ex 412 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
258 elfzelz 13445 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (1...𝐷) → 𝑎 ∈ ℤ)
259 elfzle1 13448 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (1...𝐷) → 1 ≤ 𝑎)
260258, 259jca 511 . . . . . . . . . . . . . . 15 (𝑎 ∈ (1...𝐷) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
261260adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ (1...𝐷) ∧ 𝑎𝐷) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
262261adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (1...𝐷) ∧ 𝑎𝐷)) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
263 elnnz1 12519 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
264262, 263sylibr 234 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (1...𝐷) ∧ 𝑎𝐷)) → 𝑎 ∈ ℕ)
265264rabss3d 4034 . . . . . . . . . . 11 (𝜑 → {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} ⊆ {𝑎 ∈ ℕ ∣ 𝑎𝐷})
266265sseld 3936 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} → 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷}))
267257, 266impbid 212 . . . . . . . . 9 (𝜑 → (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} ↔ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷}))
268267eqrdv 2727 . . . . . . . 8 (𝜑 → {𝑎 ∈ ℕ ∣ 𝑎𝐷} = {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷})
269268sumeq1d 15625 . . . . . . 7 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎𝐷} (ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (ϕ‘𝑘))
270241, 269eqtr2d 2765 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎𝐷} (ϕ‘𝑘) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
271222, 270eqtrd 2764 . . . . 5 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(ϕ‘𝑘) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
272 nfv 1914 . . . . . 6 𝑘𝜑
273 nfcv 2891 . . . . . 6 𝑘(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
274 fzfid 13898 . . . . . . 7 (𝜑 → (1...(𝐷 − 1)) ∈ Fin)
275 ssrab2 4033 . . . . . . . 8 {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ⊆ (1...(𝐷 − 1))
276275a1i 11 . . . . . . 7 (𝜑 → {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ⊆ (1...(𝐷 − 1)))
277274, 276ssfid 9170 . . . . . 6 (𝜑 → {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∈ Fin)
278153elrab 3650 . . . . . . . . . . . 12 (𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ↔ (𝐷 ∈ (1...(𝐷 − 1)) ∧ 𝐷𝐷))
279278biimpi 216 . . . . . . . . . . 11 (𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} → (𝐷 ∈ (1...(𝐷 − 1)) ∧ 𝐷𝐷))
280279simpld 494 . . . . . . . . . 10 (𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} → 𝐷 ∈ (1...(𝐷 − 1)))
281280adantl 481 . . . . . . . . 9 ((𝜑𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ∈ (1...(𝐷 − 1)))
282 elfzle2 13449 . . . . . . . . 9 (𝐷 ∈ (1...(𝐷 − 1)) → 𝐷 ≤ (𝐷 − 1))
283281, 282syl 17 . . . . . . . 8 ((𝜑𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐷 ≤ (𝐷 − 1))
284157ltm1d 12075 . . . . . . . . . 10 (𝜑 → (𝐷 − 1) < 𝐷)
285 1red 11135 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
286157, 285resubcld 11566 . . . . . . . . . . 11 (𝜑 → (𝐷 − 1) ∈ ℝ)
287286, 157ltnled 11281 . . . . . . . . . 10 (𝜑 → ((𝐷 − 1) < 𝐷 ↔ ¬ 𝐷 ≤ (𝐷 − 1)))
288284, 287mpbid 232 . . . . . . . . 9 (𝜑 → ¬ 𝐷 ≤ (𝐷 − 1))
289288adantr 480 . . . . . . . 8 ((𝜑𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ¬ 𝐷 ≤ (𝐷 − 1))
290283, 289pm2.21dd 195 . . . . . . 7 ((𝜑𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷})
291 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷})
292290, 291pm2.61dan 812 . . . . . 6 (𝜑 → ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷})
29310adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → 𝐵 ∈ Fin)
294 ssrab2 4033 . . . . . . . . . 10 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵
295294a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
296293, 295ssfid 9170 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
297 hashcl 14281 . . . . . . . 8 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
298296, 297syl 17 . . . . . . 7 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
299298nn0cnd 12465 . . . . . 6 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℂ)
300 eqeq2 2741 . . . . . . . 8 (𝑘 = 𝐷 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝐷))
301300rabbidv 3404 . . . . . . 7 (𝑘 = 𝐷 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
302301fveq2d 6830 . . . . . 6 (𝑘 = 𝐷 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))
303 ssrab2 4033 . . . . . . . . . 10 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ⊆ 𝐵
304303a1i 11 . . . . . . . . 9 (𝜑 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ⊆ 𝐵)
30510, 304ssfid 9170 . . . . . . . 8 (𝜑 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ∈ Fin)
306 hashcl 14281 . . . . . . . 8 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) ∈ ℕ0)
307305, 306syl 17 . . . . . . 7 (𝜑 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) ∈ ℕ0)
308307nn0cnd 12465 . . . . . 6 (𝜑 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) ∈ ℂ)
309272, 273, 277, 7, 292, 299, 302, 308fsumsplitsn 15669 . . . . 5 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})))
310271, 309eqtr2d 2765 . . . 4 (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(ϕ‘𝑘))
311 nfcv 2891 . . . . 5 𝑘(ϕ‘𝐷)
312120, 299eqeltrrd 2829 . . . . 5 ((𝜑𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷}) → (ϕ‘𝑘) ∈ ℂ)
313 fveq2 6826 . . . . 5 (𝑘 = 𝐷 → (ϕ‘𝑘) = (ϕ‘𝐷))
3147phicld 16701 . . . . . 6 (𝜑 → (ϕ‘𝐷) ∈ ℕ)
315314nncnd 12162 . . . . 5 (𝜑 → (ϕ‘𝐷) ∈ ℂ)
316272, 311, 277, 7, 292, 312, 313, 315fsumsplitsn 15669 . . . 4 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} ∪ {𝐷})(ϕ‘𝑘) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (ϕ‘𝐷)))
317310, 316eqtrd 2764 . . 3 (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (ϕ‘𝐷)))
318123, 317eqtrd 2764 . 2 (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (ϕ‘𝐷)))
319277, 312fsumcl 15658 . . 3 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) ∈ ℂ)
320319, 308, 315addcand 11337 . 2 (𝜑 → ((Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎𝐷} (ϕ‘𝑘) + (ϕ‘𝐷)) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)))
321318, 320mpbid 232 1 (𝜑 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  cun 3903  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  cr 11027  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  ...cfz 13428  chash 14255  Σcsu 15611  cdvds 16181   gcd cgcd 16423  ϕcphi 16693  Basecbs 17138  0gc0g 17361  Grpcgrp 18830  .gcmg 18964  odcod 19421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-dvds 16182  df-gcd 16424  df-phi 16695  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-od 19425
This theorem is referenced by:  unitscyglem3  42173
  Copyright terms: Public domain W3C validator