Step | Hyp | Ref
| Expression |
1 | | breq1 5169 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑘 → (𝑎 ∥ 𝐷 ↔ 𝑘 ∥ 𝐷)) |
2 | 1 | elrab 3708 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ↔ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘 ∥ 𝐷)) |
3 | 2 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} → (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘 ∥ 𝐷)) |
4 | 3 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘 ∥ 𝐷)) |
5 | 4 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝑘 ∈ (1...(𝐷 − 1))) |
6 | 5 | elfzelzd 13585 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝑘 ∈ ℤ) |
7 | | unitscyglem2.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ ℕ) |
8 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝐷 ∈ ℕ) |
9 | 8 | nnzd 12666 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝐷 ∈ ℤ) |
10 | | unitscyglem1.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ Fin) |
11 | | hashcl 14405 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ Fin →
(♯‘𝐵) ∈
ℕ0) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ0) |
13 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (♯‘𝐵) ∈
ℕ0) |
14 | 13 | nn0zd 12665 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (♯‘𝐵) ∈ ℤ) |
15 | 4 | simprd 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝑘 ∥ 𝐷) |
16 | | unitscyglem2.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∥ (♯‘𝐵)) |
17 | 16 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝐷 ∥ (♯‘𝐵)) |
18 | 6, 9, 14, 15, 17 | dvdstrd 16343 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝑘 ∥ (♯‘𝐵)) |
19 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘 ∥ 𝐷)) → 𝜑) |
20 | 2, 5 | sylan2br 594 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘 ∥ 𝐷)) → 𝑘 ∈ (1...(𝐷 − 1))) |
21 | 19, 20 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘 ∥ 𝐷)) → (𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1)))) |
22 | 2, 15 | sylan2br 594 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘 ∥ 𝐷)) → 𝑘 ∥ 𝐷) |
23 | 21, 22 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘 ∥ 𝐷)) → ((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷)) |
24 | | fveqeq2 6929 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ((𝐷 / 𝑘) ↑ 𝐴) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴)) = 𝑘)) |
25 | | unitscyglem1.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = (Base‘𝐺) |
26 | | unitscyglem1.2 |
. . . . . . . . . . . . . . . 16
⊢ ↑ =
(.g‘𝐺) |
27 | | unitscyglem1.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺 ∈ Grp) |
28 | 27 | ad4antr 731 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐺 ∈ Grp) |
29 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝑙 · 𝑘) = 𝐷) |
30 | 29 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = (𝑙 · 𝑘)) |
31 | 30 | oveq1d 7463 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) = ((𝑙 · 𝑘) / 𝑘)) |
32 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑙 ∈ ℕ) |
33 | 32 | nncnd 12309 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑙 ∈ ℂ) |
34 | | elfzelz 13584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (1...(𝐷 − 1)) → 𝑘 ∈ ℤ) |
35 | 34 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) → 𝑘 ∈ ℤ) |
36 | 35 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ∈ ℤ) |
37 | 36 | zcnd 12748 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ∈ ℂ) |
38 | | elfzle1 13587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ (1...(𝐷 − 1)) → 1 ≤ 𝑘) |
39 | 38 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) → 1 ≤ 𝑘) |
40 | 35, 39 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘)) |
41 | | elnnz1 12669 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤
𝑘)) |
42 | 40, 41 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) → 𝑘 ∈ ℕ) |
43 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) → 𝑘 ∈ ℕ) |
44 | 43 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ∈ ℕ) |
45 | 44 | nnne0d 12343 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝑘 ≠ 0) |
46 | 33, 37, 45 | divcan4d 12076 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝑙 · 𝑘) / 𝑘) = 𝑙) |
47 | 31, 46 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) = 𝑙) |
48 | 47, 32 | eqeltrd 2844 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈ ℕ) |
49 | 48 | nnnn0d 12613 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈
ℕ0) |
50 | 49 | nn0zd 12665 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈ ℤ) |
51 | | unitscyglem2.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
52 | 51 | ad4antr 731 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐴 ∈ 𝐵) |
53 | 25, 26, 28, 50, 52 | mulgcld 19136 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) ↑ 𝐴) ∈ 𝐵) |
54 | 7 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) → 𝐷 ∈ ℕ) |
55 | 54 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 ∈ ℕ) |
56 | 55 | nncnd 12309 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 ∈ ℂ) |
57 | 56, 37, 45 | divcan1d 12071 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) · 𝑘) = 𝐷) |
58 | | unitscyglem2.4 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((od‘𝐺)‘𝐴) = 𝐷) |
59 | 58 | ad4antr 731 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘𝐴) = 𝐷) |
60 | 59 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = ((od‘𝐺)‘𝐴)) |
61 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(od‘𝐺) =
(od‘𝐺) |
62 | 25, 61, 26 | odmulg 19598 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ (𝐷 / 𝑘) ∈ ℤ) → ((od‘𝐺)‘𝐴) = (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴)))) |
63 | 28, 52, 50, 62 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘𝐴) = (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴)))) |
64 | 60, 63 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴)))) |
65 | 59 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) = ((𝐷 / 𝑘) gcd 𝐷)) |
66 | 56, 37, 45 | divcan2d 12072 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝑘 · (𝐷 / 𝑘)) = 𝐷) |
67 | 66 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = (𝑘 · (𝐷 / 𝑘))) |
68 | 67 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd 𝐷) = ((𝐷 / 𝑘) gcd (𝑘 · (𝐷 / 𝑘)))) |
69 | 49, 36 | gcdmultipled 16581 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd (𝑘 · (𝐷 / 𝑘))) = (𝐷 / 𝑘)) |
70 | 68, 69 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd 𝐷) = (𝐷 / 𝑘)) |
71 | 65, 70 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) = (𝐷 / 𝑘)) |
72 | 71 | oveq1d 7463 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (((𝐷 / 𝑘) gcd ((od‘𝐺)‘𝐴)) · ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴))) = ((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴)))) |
73 | 64, 72 | eqtrd 2780 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 = ((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴)))) |
74 | 57, 73 | eqtr2d 2781 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴))) = ((𝐷 / 𝑘) · 𝑘)) |
75 | 25, 61, 53 | odcld 19594 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴)) ∈
ℕ0) |
76 | 75 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴)) ∈ ℂ) |
77 | 50 | zcnd 12748 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ∈ ℂ) |
78 | 55 | nnne0d 12343 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → 𝐷 ≠ 0) |
79 | 56, 37, 78, 45 | divne0d 12086 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (𝐷 / 𝑘) ≠ 0) |
80 | 76, 37, 77, 79 | mulcand 11923 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → (((𝐷 / 𝑘) · ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴))) = ((𝐷 / 𝑘) · 𝑘) ↔ ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴)) = 𝑘)) |
81 | 74, 80 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((od‘𝐺)‘((𝐷 / 𝑘) ↑ 𝐴)) = 𝑘) |
82 | 24, 53, 81 | elrabd 3710 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → ((𝐷 / 𝑘) ↑ 𝐴) ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) |
83 | 82 | ne0d 4365 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) ∧ 𝑙 ∈ ℕ) ∧ (𝑙 · 𝑘) = 𝐷) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) |
84 | | nndivides 16312 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑘 ∥ 𝐷 ↔ ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷)) |
85 | 43, 54, 84 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) → (𝑘 ∥ 𝐷 ↔ ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷)) |
86 | 85 | biimpd 229 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) → (𝑘 ∥ 𝐷 → ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷)) |
87 | 86 | syldbl2 840 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) → ∃𝑙 ∈ ℕ (𝑙 · 𝑘) = 𝐷) |
88 | 83, 87 | r19.29a 3168 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐷 − 1))) ∧ 𝑘 ∥ 𝐷) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) |
89 | 23, 88 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘 ∥ 𝐷)) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) |
90 | 89 | ex 412 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘 ∥ 𝐷) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)) |
91 | 90 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → ((𝑘 ∈ (1...(𝐷 − 1)) ∧ 𝑘 ∥ 𝐷) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)) |
92 | 4, 91 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) |
93 | 18, 92 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (𝑘 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)) |
94 | 5, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 1 ≤ 𝑘) |
95 | 6, 94 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘)) |
96 | 95, 41 | sylibr 234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝑘 ∈ ℕ) |
97 | 96 | nnred 12308 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝑘 ∈ ℝ) |
98 | 8 | nnred 12308 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝐷 ∈ ℝ) |
99 | | 1red 11291 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 1 ∈ ℝ) |
100 | 98, 99 | resubcld 11718 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (𝐷 − 1) ∈ ℝ) |
101 | | elfzle2 13588 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...(𝐷 − 1)) → 𝑘 ≤ (𝐷 − 1)) |
102 | 5, 101 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝑘 ≤ (𝐷 − 1)) |
103 | 98 | ltm1d 12227 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (𝐷 − 1) < 𝐷) |
104 | 97, 100, 98, 102, 103 | lelttrd 11448 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝑘 < 𝐷) |
105 | | breq1 5169 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑘 → (𝑐 < 𝐷 ↔ 𝑘 < 𝐷)) |
106 | | breq1 5169 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑘 → (𝑐 ∥ (♯‘𝐵) ↔ 𝑘 ∥ (♯‘𝐵))) |
107 | | eqeq2 2752 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑘 → (((od‘𝐺)‘𝑥) = 𝑐 ↔ ((od‘𝐺)‘𝑥) = 𝑘)) |
108 | 107 | rabbidv 3451 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑘 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) |
109 | 108 | neeq1d 3006 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑘 → ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅ ↔ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)) |
110 | 106, 109 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑘 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) ↔ (𝑘 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))) |
111 | 108 | fveq2d 6924 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑘 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
112 | | fveq2 6920 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑘 → (ϕ‘𝑐) = (ϕ‘𝑘)) |
113 | 111, 112 | eqeq12d 2756 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑘 → ((♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐) ↔ (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))) |
114 | 110, 113 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑘 → (((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)) ↔ ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))) |
115 | 105, 114 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑐 = 𝑘 → ((𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))) ↔ (𝑘 < 𝐷 → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))))) |
116 | | unitscyglem2.5 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑐 ∈ ℕ (𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
117 | 116 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → ∀𝑐 ∈ ℕ (𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) |
118 | 115, 117,
96 | rspcdva 3636 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (𝑘 < 𝐷 → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))) |
119 | 104, 118 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))) |
120 | 93, 119 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)) |
121 | 120 | sumeq2dv 15750 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘)) |
122 | 121 | eqcomd 2746 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
123 | 122 | oveq1d 7463 |
. . 3
⊢ (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) + (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))) |
124 | | elun 4176 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷}) ↔ (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∨ 𝑦 ∈ {𝐷})) |
125 | 124 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷}) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∨ 𝑦 ∈ {𝐷})) |
126 | 125 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∨ 𝑦 ∈ {𝐷})) |
127 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 1 ∈ ℤ) |
128 | 7 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 𝐷 ∈ ℕ) |
129 | 128 | nnzd 12666 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 𝐷 ∈ ℤ) |
130 | | elfzelz 13584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ (1...(𝐷 − 1)) → 𝑎 ∈ ℤ) |
131 | 130 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷) → 𝑎 ∈ ℤ) |
132 | 131 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 𝑎 ∈ ℤ) |
133 | | elfzle1 13587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ (1...(𝐷 − 1)) → 1 ≤ 𝑎) |
134 | 133 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷) → 1 ≤ 𝑎) |
135 | 134 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 1 ≤ 𝑎) |
136 | 132 | zred 12747 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 𝑎 ∈ ℝ) |
137 | 128 | nnred 12308 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 𝐷 ∈ ℝ) |
138 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 1 ∈ ℝ) |
139 | 137, 138 | resubcld 11718 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → (𝐷 − 1) ∈ ℝ) |
140 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ (1...(𝐷 − 1)) → 𝑎 ≤ (𝐷 − 1)) |
141 | 140 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷) → 𝑎 ≤ (𝐷 − 1)) |
142 | 141 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 𝑎 ≤ (𝐷 − 1)) |
143 | 137 | ltm1d 12227 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → (𝐷 − 1) < 𝐷) |
144 | 136, 139,
137, 142, 143 | lelttrd 11448 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 𝑎 < 𝐷) |
145 | 136, 137,
144 | ltled 11438 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 𝑎 ≤ 𝐷) |
146 | 127, 129,
132, 135, 145 | elfzd 13575 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑎 ∈ (1...(𝐷 − 1)) ∧ 𝑎 ∥ 𝐷)) → 𝑎 ∈ (1...𝐷)) |
147 | 146 | rabss3d 4104 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ⊆ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) |
148 | 147 | sseld 4007 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷})) |
149 | 148 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) |
150 | | elsni 4665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {𝐷} → 𝑦 = 𝐷) |
151 | 150 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ {𝐷}) → 𝑦 = 𝐷) |
152 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 = 𝐷) → 𝑦 = 𝐷) |
153 | | breq1 5169 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝐷 → (𝑎 ∥ 𝐷 ↔ 𝐷 ∥ 𝐷)) |
154 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ∈
ℤ) |
155 | 7 | nnzd 12666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐷 ∈ ℤ) |
156 | 7 | nnge1d 12341 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ≤ 𝐷) |
157 | 7 | nnred 12308 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐷 ∈ ℝ) |
158 | 157 | leidd 11856 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐷 ≤ 𝐷) |
159 | 154, 155,
155, 156, 158 | elfzd 13575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐷 ∈ (1...𝐷)) |
160 | | iddvds 16318 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) |
161 | 155, 160 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐷 ∥ 𝐷) |
162 | 153, 159,
161 | elrabd 3710 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐷 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) |
163 | 162 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 = 𝐷) → 𝐷 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) |
164 | 152, 163 | eqeltrd 2844 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 = 𝐷) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) |
165 | 164 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑦 = 𝐷 → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷})) |
166 | 165 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ {𝐷}) → (𝑦 = 𝐷 → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷})) |
167 | 151, 166 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) |
168 | 149, 167 | jaodan 958 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∨ 𝑦 ∈ {𝐷})) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) |
169 | 168 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∨ 𝑦 ∈ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷})) |
170 | 169 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})) → ((𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∨ 𝑦 ∈ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷})) |
171 | 126, 170 | mpd 15 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) |
172 | 171 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷})) |
173 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ 𝑦 = 𝐷) → 𝑦 = 𝐷) |
174 | | eqidd 2741 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ 𝑦 = 𝐷) → 𝐷 = 𝐷) |
175 | 7 | ad2antrr 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ 𝑦 = 𝐷) → 𝐷 ∈ ℕ) |
176 | | elsng 4662 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ ℕ → (𝐷 ∈ {𝐷} ↔ 𝐷 = 𝐷)) |
177 | 175, 176 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ 𝑦 = 𝐷) → (𝐷 ∈ {𝐷} ↔ 𝐷 = 𝐷)) |
178 | 174, 177 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ 𝑦 = 𝐷) → 𝐷 ∈ {𝐷}) |
179 | 173, 178 | eqeltrd 2844 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ 𝑦 = 𝐷) → 𝑦 ∈ {𝐷}) |
180 | 179 | olcd 873 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ 𝑦 = 𝐷) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∨ 𝑦 ∈ {𝐷})) |
181 | | breq1 5169 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑦 → (𝑎 ∥ 𝐷 ↔ 𝑦 ∥ 𝐷)) |
182 | 181 | elrab 3708 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} ↔ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) |
183 | 182 | biimpi 216 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} → (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) |
184 | 183 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) → (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) |
185 | 184 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) → (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) |
186 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 1 ∈ ℤ) |
187 | 155 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝐷 ∈ ℤ) |
188 | 187, 186 | zsubcld 12752 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → (𝐷 − 1) ∈ ℤ) |
189 | | elfzelz 13584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (1...𝐷) → 𝑦 ∈ ℤ) |
190 | 189 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷) → 𝑦 ∈ ℤ) |
191 | 190 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝑦 ∈ ℤ) |
192 | | elfzle1 13587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (1...𝐷) → 1 ≤ 𝑦) |
193 | 192 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷) → 1 ≤ 𝑦) |
194 | 193 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 1 ≤ 𝑦) |
195 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (1...𝐷) → 𝑦 ≤ 𝐷) |
196 | 195 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷) → 𝑦 ≤ 𝐷) |
197 | 196 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝑦 ≤ 𝐷) |
198 | | neqne 2954 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑦 = 𝐷 → 𝑦 ≠ 𝐷) |
199 | 198 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) → 𝑦 ≠ 𝐷) |
200 | 199 | necomd 3002 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) → 𝐷 ≠ 𝑦) |
201 | 200 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝐷 ≠ 𝑦) |
202 | 197, 201 | jca 511 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → (𝑦 ≤ 𝐷 ∧ 𝐷 ≠ 𝑦)) |
203 | 191 | zred 12747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝑦 ∈ ℝ) |
204 | 157 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝐷 ∈ ℝ) |
205 | 203, 204 | ltlend 11435 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → (𝑦 < 𝐷 ↔ (𝑦 ≤ 𝐷 ∧ 𝐷 ≠ 𝑦))) |
206 | 202, 205 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝑦 < 𝐷) |
207 | 7 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝐷 ∈ ℕ) |
208 | 207 | nnzd 12666 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝐷 ∈ ℤ) |
209 | 191, 208 | zltlem1d 41935 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → (𝑦 < 𝐷 ↔ 𝑦 ≤ (𝐷 − 1))) |
210 | 206, 209 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝑦 ≤ (𝐷 − 1)) |
211 | 186, 188,
191, 194, 210 | elfzd 13575 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝑦 ∈ (1...(𝐷 − 1))) |
212 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝑦 ∥ 𝐷) |
213 | 181, 211,
212 | elrabd 3710 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) ∧ (𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷)) → 𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) |
214 | 213 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) → ((𝑦 ∈ (1...𝐷) ∧ 𝑦 ∥ 𝐷) → 𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷})) |
215 | 185, 214 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) → 𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) |
216 | 215 | orcd 872 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) ∧ ¬ 𝑦 = 𝐷) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∨ 𝑦 ∈ {𝐷})) |
217 | 180, 216 | pm2.61dan 812 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) → (𝑦 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∨ 𝑦 ∈ {𝐷})) |
218 | 217, 124 | sylibr 234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) → 𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})) |
219 | 218 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} → 𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷}))) |
220 | 172, 219 | impbid 212 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷}) ↔ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷})) |
221 | 220 | eqrdv 2738 |
. . . . . . 7
⊢ (𝜑 → ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷}) = {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) |
222 | 221 | sumeq1d 15748 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})(ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘)) |
223 | | phisum 16837 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℕ →
Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) = 𝐷) |
224 | 7, 223 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) = 𝐷) |
225 | | eqcom 2747 |
. . . . . . . . . . . . . . . . . 18
⊢
(((od‘𝐺)‘𝐴) = 𝐷 ↔ 𝐷 = ((od‘𝐺)‘𝐴)) |
226 | 225 | imbi2i 336 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 → ((od‘𝐺)‘𝐴) = 𝐷) ↔ (𝜑 → 𝐷 = ((od‘𝐺)‘𝐴))) |
227 | 58, 226 | mpbi 230 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐷 = ((od‘𝐺)‘𝐴)) |
228 | 227 | oveq1d 7463 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷 ↑ 𝑥) = (((od‘𝐺)‘𝐴) ↑ 𝑥)) |
229 | 228 | eqeq1d 2742 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐷 ↑ 𝑥) = (0g‘𝐺) ↔ (((od‘𝐺)‘𝐴) ↑ 𝑥) = (0g‘𝐺))) |
230 | 229 | rabbidv 3451 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝐷 ↑ 𝑥) = (0g‘𝐺)} = {𝑥 ∈ 𝐵 ∣ (((od‘𝐺)‘𝐴) ↑ 𝑥) = (0g‘𝐺)}) |
231 | 230 | fveq2d 6924 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘{𝑥 ∈ 𝐵 ∣ (𝐷 ↑ 𝑥) = (0g‘𝐺)}) = (♯‘{𝑥 ∈ 𝐵 ∣ (((od‘𝐺)‘𝐴) ↑ 𝑥) = (0g‘𝐺)})) |
232 | | unitscyglem1.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛) |
233 | 25, 26, 27, 10, 232, 51 | unitscyglem1 42152 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘{𝑥 ∈ 𝐵 ∣ (((od‘𝐺)‘𝐴) ↑ 𝑥) = (0g‘𝐺)}) = ((od‘𝐺)‘𝐴)) |
234 | 231, 233 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘{𝑥 ∈ 𝐵 ∣ (𝐷 ↑ 𝑥) = (0g‘𝐺)}) = ((od‘𝐺)‘𝐴)) |
235 | 234, 58 | eqtr2d 2781 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 = (♯‘{𝑥 ∈ 𝐵 ∣ (𝐷 ↑ 𝑥) = (0g‘𝐺)})) |
236 | 25, 26, 27, 10, 7 | grpods 42151 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝐵 ∣ (𝐷 ↑ 𝑥) = (0g‘𝐺)})) |
237 | 235, 236 | eqtr4d 2783 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 = Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
238 | 221 | eqcomd 2746 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} = ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})) |
239 | 238 | sumeq1d 15748 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})(♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
240 | 237, 239 | eqtrd 2780 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})(♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
241 | 224, 240 | eqtr2d 2781 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})(♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘)) |
242 | | 1zzd 12674 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → 1 ∈ ℤ) |
243 | 155 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → 𝐷 ∈ ℤ) |
244 | 181 | elrab 3708 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷} ↔ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐷)) |
245 | 244 | biimpi 216 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷} → (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐷)) |
246 | 245 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝐷)) |
247 | 246 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → 𝑦 ∈ ℕ) |
248 | 247 | nnzd 12666 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → 𝑦 ∈ ℤ) |
249 | 247 | nnge1d 12341 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → 1 ≤ 𝑦) |
250 | 246 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → 𝑦 ∥ 𝐷) |
251 | 7 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → 𝐷 ∈ ℕ) |
252 | | dvdsle 16358 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷)) |
253 | 248, 251,
252 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → (𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷)) |
254 | 250, 253 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → 𝑦 ≤ 𝐷) |
255 | 242, 243,
248, 249, 254 | elfzd 13575 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → 𝑦 ∈ (1...𝐷)) |
256 | 181, 255,
250 | elrabd 3710 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) |
257 | 256 | ex 412 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷} → 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷})) |
258 | | elfzelz 13584 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (1...𝐷) → 𝑎 ∈ ℤ) |
259 | | elfzle1 13587 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (1...𝐷) → 1 ≤ 𝑎) |
260 | 258, 259 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ (1...𝐷) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)) |
261 | 260 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ (1...𝐷) ∧ 𝑎 ∥ 𝐷) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)) |
262 | 261 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐷) ∧ 𝑎 ∥ 𝐷)) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)) |
263 | | elnnz1 12669 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤
𝑎)) |
264 | 262, 263 | sylibr 234 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ (1...𝐷) ∧ 𝑎 ∥ 𝐷)) → 𝑎 ∈ ℕ) |
265 | 264 | rabss3d 4104 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} ⊆ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷}) |
266 | 265 | sseld 4007 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} → 𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷})) |
267 | 257, 266 | impbid 212 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷} ↔ 𝑦 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷})) |
268 | 267 | eqrdv 2738 |
. . . . . . . 8
⊢ (𝜑 → {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷} = {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷}) |
269 | 268 | sumeq1d 15748 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘)) |
270 | 241, 269 | eqtr2d 2781 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...𝐷) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})(♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
271 | 222, 270 | eqtrd 2780 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})(ϕ‘𝑘) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})(♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
272 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
273 | | nfcv 2908 |
. . . . . 6
⊢
Ⅎ𝑘(♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) |
274 | | fzfid 14024 |
. . . . . . 7
⊢ (𝜑 → (1...(𝐷 − 1)) ∈ Fin) |
275 | | ssrab2 4103 |
. . . . . . . 8
⊢ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ⊆ (1...(𝐷 − 1)) |
276 | 275 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ⊆ (1...(𝐷 − 1))) |
277 | 274, 276 | ssfid 9329 |
. . . . . 6
⊢ (𝜑 → {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∈ Fin) |
278 | 153 | elrab 3708 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ↔ (𝐷 ∈ (1...(𝐷 − 1)) ∧ 𝐷 ∥ 𝐷)) |
279 | 278 | biimpi 216 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} → (𝐷 ∈ (1...(𝐷 − 1)) ∧ 𝐷 ∥ 𝐷)) |
280 | 279 | simpld 494 |
. . . . . . . . . 10
⊢ (𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} → 𝐷 ∈ (1...(𝐷 − 1))) |
281 | 280 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝐷 ∈ (1...(𝐷 − 1))) |
282 | | elfzle2 13588 |
. . . . . . . . 9
⊢ (𝐷 ∈ (1...(𝐷 − 1)) → 𝐷 ≤ (𝐷 − 1)) |
283 | 281, 282 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝐷 ≤ (𝐷 − 1)) |
284 | 157 | ltm1d 12227 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐷 − 1) < 𝐷) |
285 | | 1red 11291 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℝ) |
286 | 157, 285 | resubcld 11718 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷 − 1) ∈ ℝ) |
287 | 286, 157 | ltnled 11437 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐷 − 1) < 𝐷 ↔ ¬ 𝐷 ≤ (𝐷 − 1))) |
288 | 284, 287 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝐷 ≤ (𝐷 − 1)) |
289 | 288 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → ¬ 𝐷 ≤ (𝐷 − 1)) |
290 | 283, 289 | pm2.21dd 195 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) |
291 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) |
292 | 290, 291 | pm2.61dan 812 |
. . . . . 6
⊢ (𝜑 → ¬ 𝐷 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) |
293 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → 𝐵 ∈ Fin) |
294 | | ssrab2 4103 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵 |
295 | 294 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵) |
296 | 293, 295 | ssfid 9329 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin) |
297 | | hashcl 14405 |
. . . . . . . 8
⊢ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈
ℕ0) |
298 | 296, 297 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈
ℕ0) |
299 | 298 | nn0cnd 12615 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℂ) |
300 | | eqeq2 2752 |
. . . . . . . 8
⊢ (𝑘 = 𝐷 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝐷)) |
301 | 300 | rabbidv 3451 |
. . . . . . 7
⊢ (𝑘 = 𝐷 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) |
302 | 301 | fveq2d 6924 |
. . . . . 6
⊢ (𝑘 = 𝐷 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) |
303 | | ssrab2 4103 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ⊆ 𝐵 |
304 | 303 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ⊆ 𝐵) |
305 | 10, 304 | ssfid 9329 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ∈ Fin) |
306 | | hashcl 14405 |
. . . . . . . 8
⊢ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ∈ Fin → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) ∈
ℕ0) |
307 | 305, 306 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) ∈
ℕ0) |
308 | 307 | nn0cnd 12615 |
. . . . . 6
⊢ (𝜑 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) ∈ ℂ) |
309 | 272, 273,
277, 7, 292, 299, 302, 308 | fsumsplitsn 15792 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})(♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))) |
310 | 271, 309 | eqtr2d 2781 |
. . . 4
⊢ (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})(ϕ‘𝑘)) |
311 | | nfcv 2908 |
. . . . 5
⊢
Ⅎ𝑘(ϕ‘𝐷) |
312 | 120, 299 | eqeltrrd 2845 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷}) → (ϕ‘𝑘) ∈ ℂ) |
313 | | fveq2 6920 |
. . . . 5
⊢ (𝑘 = 𝐷 → (ϕ‘𝑘) = (ϕ‘𝐷)) |
314 | 7 | phicld 16819 |
. . . . . 6
⊢ (𝜑 → (ϕ‘𝐷) ∈
ℕ) |
315 | 314 | nncnd 12309 |
. . . . 5
⊢ (𝜑 → (ϕ‘𝐷) ∈
ℂ) |
316 | 272, 311,
277, 7, 292, 312, 313, 315 | fsumsplitsn 15792 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} ∪ {𝐷})(ϕ‘𝑘) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) + (ϕ‘𝐷))) |
317 | 310, 316 | eqtrd 2780 |
. . 3
⊢ (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) + (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) + (ϕ‘𝐷))) |
318 | 123, 317 | eqtrd 2780 |
. 2
⊢ (𝜑 → (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) + (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) + (ϕ‘𝐷))) |
319 | 277, 312 | fsumcl 15781 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) ∈ ℂ) |
320 | 319, 308,
315 | addcand 11493 |
. 2
⊢ (𝜑 → ((Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) + (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})) = (Σ𝑘 ∈ {𝑎 ∈ (1...(𝐷 − 1)) ∣ 𝑎 ∥ 𝐷} (ϕ‘𝑘) + (ϕ‘𝐷)) ↔ (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))) |
321 | 318, 320 | mpbid 232 |
1
⊢ (𝜑 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)) |