MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cply1coe0 Structured version   Visualization version   GIF version

Theorem cply1coe0 22289
Description: All but the first coefficient of a constant polynomial ( i.e. a "lifted scalar") are zero. (Contributed by AV, 16-Nov-2019.)
Hypotheses
Ref Expression
cply1coe0.k 𝐾 = (Base‘𝑅)
cply1coe0.0 0 = (0g𝑅)
cply1coe0.p 𝑃 = (Poly1𝑅)
cply1coe0.b 𝐵 = (Base‘𝑃)
cply1coe0.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
cply1coe0 ((𝑅 ∈ Ring ∧ 𝑆𝐾) → ∀𝑛 ∈ ℕ ((coe1‘(𝐴𝑆))‘𝑛) = 0 )
Distinct variable groups:   𝑛,𝐾   𝑅,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝑃(𝑛)   0 (𝑛)

Proof of Theorem cply1coe0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cply1coe0.p . . . . 5 𝑃 = (Poly1𝑅)
2 cply1coe0.a . . . . 5 𝐴 = (algSc‘𝑃)
3 cply1coe0.k . . . . 5 𝐾 = (Base‘𝑅)
4 cply1coe0.0 . . . . 5 0 = (0g𝑅)
51, 2, 3, 4coe1scl 22274 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐾) → (coe1‘(𝐴𝑆)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, 𝑆, 0 )))
65adantr 479 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐾) ∧ 𝑛 ∈ ℕ) → (coe1‘(𝐴𝑆)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, 𝑆, 0 )))
7 nnne0 12292 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
87neneqd 2935 . . . . . . 7 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
98adantl 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐾) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0)
109adantr 479 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑆𝐾) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ¬ 𝑛 = 0)
11 eqeq1 2730 . . . . . . 7 (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0))
1211notbid 317 . . . . . 6 (𝑘 = 𝑛 → (¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0))
1312adantl 480 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑆𝐾) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0))
1410, 13mpbird 256 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑆𝐾) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ¬ 𝑘 = 0)
1514iffalsed 4534 . . 3 ((((𝑅 ∈ Ring ∧ 𝑆𝐾) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → if(𝑘 = 0, 𝑆, 0 ) = 0 )
16 nnnn0 12525 . . . 4 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1716adantl 480 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐾) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
184fvexi 6907 . . . 4 0 ∈ V
1918a1i 11 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐾) ∧ 𝑛 ∈ ℕ) → 0 ∈ V)
206, 15, 17, 19fvmptd 7008 . 2 (((𝑅 ∈ Ring ∧ 𝑆𝐾) ∧ 𝑛 ∈ ℕ) → ((coe1‘(𝐴𝑆))‘𝑛) = 0 )
2120ralrimiva 3136 1 ((𝑅 ∈ Ring ∧ 𝑆𝐾) → ∀𝑛 ∈ ℕ ((coe1‘(𝐴𝑆))‘𝑛) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  Vcvv 3462  ifcif 4523  cmpt 5228  cfv 6546  0cc0 11149  cn 12258  0cn0 12518  Basecbs 17208  0gc0g 17449  Ringcrg 20212  algSccascl 21846  Poly1cpl1 22162  coe1cco1 22163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-sup 9478  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-fz 13533  df-fzo 13676  df-seq 14016  df-hash 14343  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-hom 17285  df-cco 17286  df-0g 17451  df-gsum 17452  df-prds 17457  df-pws 17459  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19058  df-subg 19113  df-ghm 19203  df-cntz 19307  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-subrng 20524  df-subrg 20549  df-lmod 20834  df-lss 20905  df-ascl 21849  df-psr 21902  df-mvr 21903  df-mpl 21904  df-opsr 21906  df-psr1 22165  df-vr1 22166  df-ply1 22167  df-coe1 22168
This theorem is referenced by:  cply1coe0bi  22290  1elcpmat  22705
  Copyright terms: Public domain W3C validator