| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrhrhm | Structured version Visualization version GIF version | ||
| Description: The ℤRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| zrhval.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| zrhrhm | ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ 𝐿 = 𝐿 | |
| 2 | zrhval.l | . . 3 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 3 | 2 | zrhrhmb 21448 | . 2 ⊢ (𝑅 ∈ Ring → (𝐿 ∈ (ℤring RingHom 𝑅) ↔ 𝐿 = 𝐿)) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Ringcrg 20152 RingHom crh 20388 ℤringczring 21384 ℤRHomczrh 21437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-seq 13909 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-mulg 18981 df-subg 19036 df-ghm 19126 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-cring 20155 df-rhm 20391 df-subrng 20462 df-subrg 20486 df-cnfld 21293 df-zring 21385 df-zrh 21441 |
| This theorem is referenced by: zrh1 21450 zrh0 21451 fermltlchr 21467 chrrhm 21469 domnchr 21470 zndvds0 21488 znf1o 21489 zzngim 21490 znfld 21498 znidomb 21499 znunit 21501 znrrg 21503 cygznlem3 21507 zrhpsgnmhm 21522 zrhpsgnodpm 21530 ply1fermltlchr 22228 dchrzrhmul 27185 lgsqrlem1 27285 lgsqrlem2 27286 lgsqrlem3 27287 lgsdchr 27294 lgseisenlem3 27316 lgseisenlem4 27317 dchrisum0flblem1 27447 znfermltl 33329 elrspunidl 33391 esplympl 33586 mdetpmtr1 33834 mdetpmtr12 33836 mdetlap 33843 zrhf1ker 33984 zrhunitpreima 33987 elzrhunit 33988 zrhneg 33989 zrhcntr 33990 qqhval2lem 33992 qqhf 33997 qqhghm 33999 qqhrhm 34000 qqhnm 34001 zndvdchrrhm 42011 aks6d1c1p2 42148 aks6d1c1p3 42149 aks6d1c1 42155 hashscontpowcl 42159 hashscontpow 42161 aks6d1c4 42163 aks6d1c2 42169 aks6d1c5lem0 42174 aks6d1c5lem1 42175 aks6d1c5lem3 42176 aks6d1c5lem2 42177 aks6d1c5 42178 aks6d1c6lem1 42209 aks6d1c6lem3 42211 aks6d1c6lem5 42216 aks6d1c7lem1 42219 aks5lem3a 42228 aks5lem5a 42230 |
| Copyright terms: Public domain | W3C validator |