![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhrhm | Structured version Visualization version GIF version |
Description: The ℤRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
Ref | Expression |
---|---|
zrhval.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
zrhrhm | ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ 𝐿 = 𝐿 | |
2 | zrhval.l | . . 3 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
3 | 2 | zrhrhmb 21539 | . 2 ⊢ (𝑅 ∈ Ring → (𝐿 ∈ (ℤring RingHom 𝑅) ↔ 𝐿 = 𝐿)) |
4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Ringcrg 20251 RingHom crh 20486 ℤringczring 21475 ℤRHomczrh 21528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-seq 14040 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-minusg 18968 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-cnfld 21383 df-zring 21476 df-zrh 21532 |
This theorem is referenced by: zrh1 21541 zrh0 21542 fermltlchr 21562 chrrhm 21564 domnchr 21565 zndvds0 21587 znf1o 21588 zzngim 21589 znfld 21597 znidomb 21598 znunit 21600 znrrg 21602 cygznlem3 21606 zrhpsgnmhm 21620 zrhpsgnodpm 21628 ply1fermltlchr 22332 dchrzrhmul 27305 lgsqrlem1 27405 lgsqrlem2 27406 lgsqrlem3 27407 lgsdchr 27414 lgseisenlem3 27436 lgseisenlem4 27437 dchrisum0flblem1 27567 znfermltl 33374 elrspunidl 33436 mdetpmtr1 33784 mdetpmtr12 33786 mdetlap 33793 zrhf1ker 33936 zrhunitpreima 33939 elzrhunit 33940 zrhneg 33941 zrhcntr 33942 qqhval2lem 33944 qqhf 33949 qqhghm 33951 qqhrhm 33952 qqhnm 33953 zndvdchrrhm 41953 aks6d1c1p2 42091 aks6d1c1p3 42092 aks6d1c1 42098 hashscontpowcl 42102 hashscontpow 42104 aks6d1c4 42106 aks6d1c2 42112 aks6d1c5lem0 42117 aks6d1c5lem1 42118 aks6d1c5lem3 42119 aks6d1c5lem2 42120 aks6d1c5 42121 aks6d1c6lem1 42152 aks6d1c6lem3 42154 aks6d1c6lem5 42159 aks6d1c7lem1 42162 aks5lem3a 42171 aks5lem5a 42173 |
Copyright terms: Public domain | W3C validator |