![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqcoe1ply1eq | Structured version Visualization version GIF version |
Description: Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019.) |
Ref | Expression |
---|---|
eqcoe1ply1eq.p | ⊢ 𝑃 = (Poly1‘𝑅) |
eqcoe1ply1eq.b | ⊢ 𝐵 = (Base‘𝑃) |
eqcoe1ply1eq.a | ⊢ 𝐴 = (coe1‘𝐾) |
eqcoe1ply1eq.c | ⊢ 𝐶 = (coe1‘𝐿) |
Ref | Expression |
---|---|
eqcoe1ply1eq | ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6881 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑛 → (𝐴‘𝑘) = (𝐴‘𝑛)) | |
2 | fveq2 6881 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑛 → (𝐶‘𝑘) = (𝐶‘𝑛)) | |
3 | 1, 2 | eqeq12d 2740 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑛 → ((𝐴‘𝑘) = (𝐶‘𝑘) ↔ (𝐴‘𝑛) = (𝐶‘𝑛))) |
4 | 3 | rspccv 3601 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → (𝑛 ∈ ℕ0 → (𝐴‘𝑛) = (𝐶‘𝑛))) |
5 | 4 | adantl 481 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑛 ∈ ℕ0 → (𝐴‘𝑛) = (𝐶‘𝑛))) |
6 | 5 | imp 406 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) = (𝐶‘𝑛)) |
7 | eqcoe1ply1eq.a | . . . . . . . 8 ⊢ 𝐴 = (coe1‘𝐾) | |
8 | 7 | fveq1i 6882 | . . . . . . 7 ⊢ (𝐴‘𝑛) = ((coe1‘𝐾)‘𝑛) |
9 | eqcoe1ply1eq.c | . . . . . . . 8 ⊢ 𝐶 = (coe1‘𝐿) | |
10 | 9 | fveq1i 6882 | . . . . . . 7 ⊢ (𝐶‘𝑛) = ((coe1‘𝐿)‘𝑛) |
11 | 6, 8, 10 | 3eqtr3g 2787 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘𝐾)‘𝑛) = ((coe1‘𝐿)‘𝑛)) |
12 | 11 | oveq1d 7416 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
13 | 12 | mpteq2dva 5238 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) |
14 | 13 | oveq2d 7417 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
15 | eqcoe1ply1eq.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
16 | eqid 2724 | . . . . . . 7 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
17 | eqcoe1ply1eq.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
18 | eqid 2724 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
19 | eqid 2724 | . . . . . . 7 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
20 | eqid 2724 | . . . . . . 7 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
21 | eqid 2724 | . . . . . . 7 ⊢ (coe1‘𝐾) = (coe1‘𝐾) | |
22 | 15, 16, 17, 18, 19, 20, 21 | ply1coe 22138 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
23 | 22 | 3adant3 1129 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
24 | eqid 2724 | . . . . . . 7 ⊢ (coe1‘𝐿) = (coe1‘𝐿) | |
25 | 15, 16, 17, 18, 19, 20, 24 | ply1coe 22138 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐵) → 𝐿 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
26 | 25 | 3adant2 1128 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐿 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
27 | 23, 26 | eqeq12d 2740 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝐾 = 𝐿 ↔ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) |
28 | 27 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝐾 = 𝐿 ↔ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) |
29 | 14, 28 | mpbird 257 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → 𝐾 = 𝐿) |
30 | 29 | ex 412 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ↦ cmpt 5221 ‘cfv 6533 (class class class)co 7401 ℕ0cn0 12468 Basecbs 17142 ·𝑠 cvsca 17199 Σg cgsu 17384 .gcmg 18984 mulGrpcmgp 20028 Ringcrg 20127 var1cv1 22017 Poly1cpl1 22018 coe1cco1 22019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-ofr 7664 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-sup 9432 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-sca 17211 df-vsca 17212 df-ip 17213 df-tset 17214 df-ple 17215 df-ds 17217 df-hom 17219 df-cco 17220 df-0g 17385 df-gsum 17386 df-prds 17391 df-pws 17393 df-mre 17528 df-mrc 17529 df-acs 17531 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-mhm 18702 df-submnd 18703 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18985 df-subg 19039 df-ghm 19128 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-srg 20081 df-ring 20129 df-subrng 20435 df-subrg 20460 df-lmod 20697 df-lss 20768 df-psr 21770 df-mvr 21771 df-mpl 21772 df-opsr 21774 df-psr1 22021 df-vr1 22022 df-ply1 22023 df-coe1 22024 |
This theorem is referenced by: ply1coe1eq 22140 cply1coe0bi 22142 mp2pm2mp 22634 |
Copyright terms: Public domain | W3C validator |