Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqcoe1ply1eq | Structured version Visualization version GIF version |
Description: Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019.) |
Ref | Expression |
---|---|
eqcoe1ply1eq.p | ⊢ 𝑃 = (Poly1‘𝑅) |
eqcoe1ply1eq.b | ⊢ 𝐵 = (Base‘𝑃) |
eqcoe1ply1eq.a | ⊢ 𝐴 = (coe1‘𝐾) |
eqcoe1ply1eq.c | ⊢ 𝐶 = (coe1‘𝐿) |
Ref | Expression |
---|---|
eqcoe1ply1eq | ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑛 → (𝐴‘𝑘) = (𝐴‘𝑛)) | |
2 | fveq2 6774 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑛 → (𝐶‘𝑘) = (𝐶‘𝑛)) | |
3 | 1, 2 | eqeq12d 2754 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑛 → ((𝐴‘𝑘) = (𝐶‘𝑘) ↔ (𝐴‘𝑛) = (𝐶‘𝑛))) |
4 | 3 | rspccv 3558 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → (𝑛 ∈ ℕ0 → (𝐴‘𝑛) = (𝐶‘𝑛))) |
5 | 4 | adantl 482 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑛 ∈ ℕ0 → (𝐴‘𝑛) = (𝐶‘𝑛))) |
6 | 5 | imp 407 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) = (𝐶‘𝑛)) |
7 | eqcoe1ply1eq.a | . . . . . . . 8 ⊢ 𝐴 = (coe1‘𝐾) | |
8 | 7 | fveq1i 6775 | . . . . . . 7 ⊢ (𝐴‘𝑛) = ((coe1‘𝐾)‘𝑛) |
9 | eqcoe1ply1eq.c | . . . . . . . 8 ⊢ 𝐶 = (coe1‘𝐿) | |
10 | 9 | fveq1i 6775 | . . . . . . 7 ⊢ (𝐶‘𝑛) = ((coe1‘𝐿)‘𝑛) |
11 | 6, 8, 10 | 3eqtr3g 2801 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘𝐾)‘𝑛) = ((coe1‘𝐿)‘𝑛)) |
12 | 11 | oveq1d 7290 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
13 | 12 | mpteq2dva 5174 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) |
14 | 13 | oveq2d 7291 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
15 | eqcoe1ply1eq.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
16 | eqid 2738 | . . . . . . 7 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
17 | eqcoe1ply1eq.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
18 | eqid 2738 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
19 | eqid 2738 | . . . . . . 7 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
20 | eqid 2738 | . . . . . . 7 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
21 | eqid 2738 | . . . . . . 7 ⊢ (coe1‘𝐾) = (coe1‘𝐾) | |
22 | 15, 16, 17, 18, 19, 20, 21 | ply1coe 21467 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
23 | 22 | 3adant3 1131 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
24 | eqid 2738 | . . . . . . 7 ⊢ (coe1‘𝐿) = (coe1‘𝐿) | |
25 | 15, 16, 17, 18, 19, 20, 24 | ply1coe 21467 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐵) → 𝐿 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
26 | 25 | 3adant2 1130 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐿 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
27 | 23, 26 | eqeq12d 2754 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝐾 = 𝐿 ↔ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) |
28 | 27 | adantr 481 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝐾 = 𝐿 ↔ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) |
29 | 14, 28 | mpbird 256 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → 𝐾 = 𝐿) |
30 | 29 | ex 413 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℕ0cn0 12233 Basecbs 16912 ·𝑠 cvsca 16966 Σg cgsu 17151 .gcmg 18700 mulGrpcmgp 19720 Ringcrg 19783 var1cv1 21347 Poly1cpl1 21348 coe1cco1 21349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-tset 16981 df-ple 16982 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-srg 19742 df-ring 19785 df-subrg 20022 df-lmod 20125 df-lss 20194 df-psr 21112 df-mvr 21113 df-mpl 21114 df-opsr 21116 df-psr1 21351 df-vr1 21352 df-ply1 21353 df-coe1 21354 |
This theorem is referenced by: ply1coe1eq 21469 cply1coe0bi 21471 mp2pm2mp 21960 |
Copyright terms: Public domain | W3C validator |