| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqcoe1ply1eq | Structured version Visualization version GIF version | ||
| Description: Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019.) |
| Ref | Expression |
|---|---|
| eqcoe1ply1eq.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| eqcoe1ply1eq.b | ⊢ 𝐵 = (Base‘𝑃) |
| eqcoe1ply1eq.a | ⊢ 𝐴 = (coe1‘𝐾) |
| eqcoe1ply1eq.c | ⊢ 𝐶 = (coe1‘𝐿) |
| Ref | Expression |
|---|---|
| eqcoe1ply1eq | ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑛 → (𝐴‘𝑘) = (𝐴‘𝑛)) | |
| 2 | fveq2 6881 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑛 → (𝐶‘𝑘) = (𝐶‘𝑛)) | |
| 3 | 1, 2 | eqeq12d 2752 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑛 → ((𝐴‘𝑘) = (𝐶‘𝑘) ↔ (𝐴‘𝑛) = (𝐶‘𝑛))) |
| 4 | 3 | rspccv 3603 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → (𝑛 ∈ ℕ0 → (𝐴‘𝑛) = (𝐶‘𝑛))) |
| 5 | 4 | adantl 481 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑛 ∈ ℕ0 → (𝐴‘𝑛) = (𝐶‘𝑛))) |
| 6 | 5 | imp 406 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) = (𝐶‘𝑛)) |
| 7 | eqcoe1ply1eq.a | . . . . . . . 8 ⊢ 𝐴 = (coe1‘𝐾) | |
| 8 | 7 | fveq1i 6882 | . . . . . . 7 ⊢ (𝐴‘𝑛) = ((coe1‘𝐾)‘𝑛) |
| 9 | eqcoe1ply1eq.c | . . . . . . . 8 ⊢ 𝐶 = (coe1‘𝐿) | |
| 10 | 9 | fveq1i 6882 | . . . . . . 7 ⊢ (𝐶‘𝑛) = ((coe1‘𝐿)‘𝑛) |
| 11 | 6, 8, 10 | 3eqtr3g 2794 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘𝐾)‘𝑛) = ((coe1‘𝐿)‘𝑛)) |
| 12 | 11 | oveq1d 7425 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
| 13 | 12 | mpteq2dva 5219 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) |
| 14 | 13 | oveq2d 7426 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 15 | eqcoe1ply1eq.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 16 | eqid 2736 | . . . . . . 7 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
| 17 | eqcoe1ply1eq.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
| 18 | eqid 2736 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
| 19 | eqid 2736 | . . . . . . 7 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 20 | eqid 2736 | . . . . . . 7 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
| 21 | eqid 2736 | . . . . . . 7 ⊢ (coe1‘𝐾) = (coe1‘𝐾) | |
| 22 | 15, 16, 17, 18, 19, 20, 21 | ply1coe 22241 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 23 | 22 | 3adant3 1132 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 24 | eqid 2736 | . . . . . . 7 ⊢ (coe1‘𝐿) = (coe1‘𝐿) | |
| 25 | 15, 16, 17, 18, 19, 20, 24 | ply1coe 22241 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐵) → 𝐿 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 26 | 25 | 3adant2 1131 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐿 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 27 | 23, 26 | eqeq12d 2752 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝐾 = 𝐿 ↔ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) |
| 28 | 27 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝐾 = 𝐿 ↔ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) |
| 29 | 14, 28 | mpbird 257 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → 𝐾 = 𝐿) |
| 30 | 29 | ex 412 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ℕ0cn0 12506 Basecbs 17233 ·𝑠 cvsca 17280 Σg cgsu 17459 .gcmg 19055 mulGrpcmgp 20105 Ringcrg 20198 var1cv1 22116 Poly1cpl1 22117 coe1cco1 22118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-subrng 20511 df-subrg 20535 df-lmod 20824 df-lss 20894 df-psr 21874 df-mvr 21875 df-mpl 21876 df-opsr 21878 df-psr1 22120 df-vr1 22121 df-ply1 22122 df-coe1 22123 |
| This theorem is referenced by: ply1coe1eq 22243 cply1coe0bi 22245 mp2pm2mp 22754 |
| Copyright terms: Public domain | W3C validator |