| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqcoe1ply1eq | Structured version Visualization version GIF version | ||
| Description: Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019.) |
| Ref | Expression |
|---|---|
| eqcoe1ply1eq.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| eqcoe1ply1eq.b | ⊢ 𝐵 = (Base‘𝑃) |
| eqcoe1ply1eq.a | ⊢ 𝐴 = (coe1‘𝐾) |
| eqcoe1ply1eq.c | ⊢ 𝐶 = (coe1‘𝐿) |
| Ref | Expression |
|---|---|
| eqcoe1ply1eq | ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6840 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑛 → (𝐴‘𝑘) = (𝐴‘𝑛)) | |
| 2 | fveq2 6840 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑛 → (𝐶‘𝑘) = (𝐶‘𝑛)) | |
| 3 | 1, 2 | eqeq12d 2745 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑛 → ((𝐴‘𝑘) = (𝐶‘𝑘) ↔ (𝐴‘𝑛) = (𝐶‘𝑛))) |
| 4 | 3 | rspccv 3582 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → (𝑛 ∈ ℕ0 → (𝐴‘𝑛) = (𝐶‘𝑛))) |
| 5 | 4 | adantl 481 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑛 ∈ ℕ0 → (𝐴‘𝑛) = (𝐶‘𝑛))) |
| 6 | 5 | imp 406 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) = (𝐶‘𝑛)) |
| 7 | eqcoe1ply1eq.a | . . . . . . . 8 ⊢ 𝐴 = (coe1‘𝐾) | |
| 8 | 7 | fveq1i 6841 | . . . . . . 7 ⊢ (𝐴‘𝑛) = ((coe1‘𝐾)‘𝑛) |
| 9 | eqcoe1ply1eq.c | . . . . . . . 8 ⊢ 𝐶 = (coe1‘𝐿) | |
| 10 | 9 | fveq1i 6841 | . . . . . . 7 ⊢ (𝐶‘𝑛) = ((coe1‘𝐿)‘𝑛) |
| 11 | 6, 8, 10 | 3eqtr3g 2787 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘𝐾)‘𝑛) = ((coe1‘𝐿)‘𝑛)) |
| 12 | 11 | oveq1d 7384 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
| 13 | 12 | mpteq2dva 5195 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) |
| 14 | 13 | oveq2d 7385 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 15 | eqcoe1ply1eq.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 16 | eqid 2729 | . . . . . . 7 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
| 17 | eqcoe1ply1eq.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
| 18 | eqid 2729 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
| 21 | eqid 2729 | . . . . . . 7 ⊢ (coe1‘𝐾) = (coe1‘𝐾) | |
| 22 | 15, 16, 17, 18, 19, 20, 21 | ply1coe 22219 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 23 | 22 | 3adant3 1132 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (coe1‘𝐿) = (coe1‘𝐿) | |
| 25 | 15, 16, 17, 18, 19, 20, 24 | ply1coe 22219 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐵) → 𝐿 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 26 | 25 | 3adant2 1131 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐿 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
| 27 | 23, 26 | eqeq12d 2745 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝐾 = 𝐿 ↔ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) |
| 28 | 27 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝐾 = 𝐿 ↔ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) |
| 29 | 14, 28 | mpbird 257 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → 𝐾 = 𝐿) |
| 30 | 29 | ex 412 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℕ0cn0 12420 Basecbs 17156 ·𝑠 cvsca 17201 Σg cgsu 17380 .gcmg 18982 mulGrpcmgp 20061 Ringcrg 20154 var1cv1 22094 Poly1cpl1 22095 coe1cco1 22096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-fz 13447 df-fzo 13594 df-seq 13945 df-hash 14274 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-0g 17381 df-gsum 17382 df-prds 17387 df-pws 17389 df-mre 17524 df-mrc 17525 df-acs 17527 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19128 df-cntz 19232 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-srg 20108 df-ring 20156 df-subrng 20467 df-subrg 20491 df-lmod 20801 df-lss 20871 df-psr 21852 df-mvr 21853 df-mpl 21854 df-opsr 21856 df-psr1 22098 df-vr1 22099 df-ply1 22100 df-coe1 22101 |
| This theorem is referenced by: ply1coe1eq 22221 cply1coe0bi 22223 mp2pm2mp 22732 |
| Copyright terms: Public domain | W3C validator |