![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqcoe1ply1eq | Structured version Visualization version GIF version |
Description: Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019.) |
Ref | Expression |
---|---|
eqcoe1ply1eq.p | ⊢ 𝑃 = (Poly1‘𝑅) |
eqcoe1ply1eq.b | ⊢ 𝐵 = (Base‘𝑃) |
eqcoe1ply1eq.a | ⊢ 𝐴 = (coe1‘𝐾) |
eqcoe1ply1eq.c | ⊢ 𝐶 = (coe1‘𝐿) |
Ref | Expression |
---|---|
eqcoe1ply1eq | ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑛 → (𝐴‘𝑘) = (𝐴‘𝑛)) | |
2 | fveq2 6907 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑛 → (𝐶‘𝑘) = (𝐶‘𝑛)) | |
3 | 1, 2 | eqeq12d 2751 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑛 → ((𝐴‘𝑘) = (𝐶‘𝑘) ↔ (𝐴‘𝑛) = (𝐶‘𝑛))) |
4 | 3 | rspccv 3619 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → (𝑛 ∈ ℕ0 → (𝐴‘𝑛) = (𝐶‘𝑛))) |
5 | 4 | adantl 481 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑛 ∈ ℕ0 → (𝐴‘𝑛) = (𝐶‘𝑛))) |
6 | 5 | imp 406 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) = (𝐶‘𝑛)) |
7 | eqcoe1ply1eq.a | . . . . . . . 8 ⊢ 𝐴 = (coe1‘𝐾) | |
8 | 7 | fveq1i 6908 | . . . . . . 7 ⊢ (𝐴‘𝑛) = ((coe1‘𝐾)‘𝑛) |
9 | eqcoe1ply1eq.c | . . . . . . . 8 ⊢ 𝐶 = (coe1‘𝐿) | |
10 | 9 | fveq1i 6908 | . . . . . . 7 ⊢ (𝐶‘𝑛) = ((coe1‘𝐿)‘𝑛) |
11 | 6, 8, 10 | 3eqtr3g 2798 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘𝐾)‘𝑛) = ((coe1‘𝐿)‘𝑛)) |
12 | 11 | oveq1d 7446 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
13 | 12 | mpteq2dva 5248 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) |
14 | 13 | oveq2d 7447 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
15 | eqcoe1ply1eq.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
16 | eqid 2735 | . . . . . . 7 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
17 | eqcoe1ply1eq.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
18 | eqid 2735 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
19 | eqid 2735 | . . . . . . 7 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
20 | eqid 2735 | . . . . . . 7 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
21 | eqid 2735 | . . . . . . 7 ⊢ (coe1‘𝐾) = (coe1‘𝐾) | |
22 | 15, 16, 17, 18, 19, 20, 21 | ply1coe 22318 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
23 | 22 | 3adant3 1131 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
24 | eqid 2735 | . . . . . . 7 ⊢ (coe1‘𝐿) = (coe1‘𝐿) | |
25 | 15, 16, 17, 18, 19, 20, 24 | ply1coe 22318 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐵) → 𝐿 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
26 | 25 | 3adant2 1130 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → 𝐿 = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
27 | 23, 26 | eqeq12d 2751 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝐾 = 𝐿 ↔ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) |
28 | 27 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → (𝐾 = 𝐿 ↔ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐿)‘𝑛)( ·𝑠 ‘𝑃)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) |
29 | 14, 28 | mpbird 257 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) ∧ ∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘)) → 𝐾 = 𝐿) |
30 | 29 | ex 412 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ℕ0cn0 12524 Basecbs 17245 ·𝑠 cvsca 17302 Σg cgsu 17487 .gcmg 19098 mulGrpcmgp 20152 Ringcrg 20251 var1cv1 22193 Poly1cpl1 22194 coe1cco1 22195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-psr1 22197 df-vr1 22198 df-ply1 22199 df-coe1 22200 |
This theorem is referenced by: ply1coe1eq 22320 cply1coe0bi 22322 mp2pm2mp 22833 |
Copyright terms: Public domain | W3C validator |