MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chmatcl Structured version   Visualization version   GIF version

Theorem chmatcl 22744
Description: Closure of the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) (Proof shortened by AV, 29-Nov-2019.)
Hypotheses
Ref Expression
chmatcl.a 𝐴 = (𝑁 Mat 𝑅)
chmatcl.b 𝐵 = (Base‘𝐴)
chmatcl.p 𝑃 = (Poly1𝑅)
chmatcl.y 𝑌 = (𝑁 Mat 𝑃)
chmatcl.x 𝑋 = (var1𝑅)
chmatcl.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chmatcl.s = (-g𝑌)
chmatcl.m · = ( ·𝑠𝑌)
chmatcl.1 1 = (1r𝑌)
chmatcl.h 𝐻 = ((𝑋 · 1 ) (𝑇𝑀))
Assertion
Ref Expression
chmatcl ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝐻 ∈ (Base‘𝑌))

Proof of Theorem chmatcl
StepHypRef Expression
1 chmatcl.h . 2 𝐻 = ((𝑋 · 1 ) (𝑇𝑀))
2 chmatcl.p . . . . . 6 𝑃 = (Poly1𝑅)
3 chmatcl.y . . . . . 6 𝑌 = (𝑁 Mat 𝑃)
42, 3pmatring 22608 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
5 ringgrp 20157 . . . . 5 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
64, 5syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Grp)
763adant3 1132 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
82ply1ring 22161 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
98anim2i 617 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
1093adant3 1132 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
11 chmatcl.x . . . . . 6 𝑋 = (var1𝑅)
12 eqid 2731 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
1311, 2, 12vr1cl 22131 . . . . 5 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
14133ad2ant2 1134 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
1543adant3 1132 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
16 eqid 2731 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
17 chmatcl.1 . . . . . 6 1 = (1r𝑌)
1816, 17ringidcl 20184 . . . . 5 (𝑌 ∈ Ring → 1 ∈ (Base‘𝑌))
1915, 18syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
20 chmatcl.m . . . . 5 · = ( ·𝑠𝑌)
2112, 3, 16, 20matvscl 22347 . . . 4 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑌))) → (𝑋 · 1 ) ∈ (Base‘𝑌))
2210, 14, 19, 21syl12anc 836 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌))
23 chmatcl.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
24 chmatcl.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
25 chmatcl.b . . . 4 𝐵 = (Base‘𝐴)
2623, 24, 25, 2, 3mat2pmatbas 22642 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
27 chmatcl.s . . . 4 = (-g𝑌)
2816, 27grpsubcl 18933 . . 3 ((𝑌 ∈ Grp ∧ (𝑋 · 1 ) ∈ (Base‘𝑌) ∧ (𝑇𝑀) ∈ (Base‘𝑌)) → ((𝑋 · 1 ) (𝑇𝑀)) ∈ (Base‘𝑌))
297, 22, 26, 28syl3anc 1373 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑋 · 1 ) (𝑇𝑀)) ∈ (Base‘𝑌))
301, 29eqeltrid 2835 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝐻 ∈ (Base‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Fincfn 8869  Basecbs 17120   ·𝑠 cvsca 17165  Grpcgrp 18846  -gcsg 18848  1rcur 20100  Ringcrg 20152  var1cv1 22089  Poly1cpl1 22090   Mat cmat 22323   matToPolyMat cmat2pmat 22620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-subrng 20462  df-subrg 20486  df-lmod 20796  df-lss 20866  df-sra 21108  df-rgmod 21109  df-dsmm 21670  df-frlm 21685  df-ascl 21793  df-psr 21847  df-mvr 21848  df-mpl 21849  df-opsr 21851  df-psr1 22093  df-vr1 22094  df-ply1 22095  df-mamu 22307  df-mat 22324  df-mat2pmat 22623
This theorem is referenced by:  chpmatply1  22748  chpmatval2  22749  cpmadurid  22783  cpmadugsumfi  22793
  Copyright terms: Public domain W3C validator