| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chpdmatlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for chpdmat 22745. (Contributed by AV, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| chpdmat.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| chpdmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| chpdmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| chpdmat.s | ⊢ 𝑆 = (algSc‘𝑃) |
| chpdmat.b | ⊢ 𝐵 = (Base‘𝐴) |
| chpdmat.x | ⊢ 𝑋 = (var1‘𝑅) |
| chpdmat.0 | ⊢ 0 = (0g‘𝑅) |
| chpdmat.g | ⊢ 𝐺 = (mulGrp‘𝑃) |
| chpdmat.m | ⊢ − = (-g‘𝑃) |
| chpdmatlem.q | ⊢ 𝑄 = (𝑁 Mat 𝑃) |
| chpdmatlem.1 | ⊢ 1 = (1r‘𝑄) |
| chpdmatlem.m | ⊢ · = ( ·𝑠 ‘𝑄) |
| chpdmatlem.z | ⊢ 𝑍 = (-g‘𝑄) |
| chpdmatlem.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| Ref | Expression |
|---|---|
| chpdmatlem1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 )𝑍(𝑇‘𝑀)) ∈ (Base‘𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpdmat.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | chpdmatlem.q | . . . . 5 ⊢ 𝑄 = (𝑁 Mat 𝑃) | |
| 3 | 1, 2 | pmatring 22596 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring) |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑄 ∈ Ring) |
| 5 | ringgrp 20142 | . . 3 ⊢ (𝑄 ∈ Ring → 𝑄 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑄 ∈ Grp) |
| 7 | chpdmat.c | . . . 4 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 8 | chpdmat.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 9 | chpdmat.s | . . . 4 ⊢ 𝑆 = (algSc‘𝑃) | |
| 10 | chpdmat.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 11 | chpdmat.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 12 | chpdmat.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 13 | chpdmat.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑃) | |
| 14 | chpdmat.m | . . . 4 ⊢ − = (-g‘𝑃) | |
| 15 | chpdmatlem.1 | . . . 4 ⊢ 1 = (1r‘𝑄) | |
| 16 | chpdmatlem.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑄) | |
| 17 | 7, 1, 8, 9, 10, 11, 12, 13, 14, 2, 15, 16 | chpdmatlem0 22741 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄)) |
| 18 | 17 | 3adant3 1132 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑄)) |
| 19 | chpdmatlem.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 20 | 19, 8, 10, 1, 2 | mat2pmatbas 22630 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑄)) |
| 21 | eqid 2729 | . . 3 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 22 | chpdmatlem.z | . . 3 ⊢ 𝑍 = (-g‘𝑄) | |
| 23 | 21, 22 | grpsubcl 18918 | . 2 ⊢ ((𝑄 ∈ Grp ∧ (𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇‘𝑀) ∈ (Base‘𝑄)) → ((𝑋 · 1 )𝑍(𝑇‘𝑀)) ∈ (Base‘𝑄)) |
| 24 | 6, 18, 20, 23 | syl3anc 1373 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 )𝑍(𝑇‘𝑀)) ∈ (Base‘𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 Basecbs 17139 ·𝑠 cvsca 17184 0gc0g 17362 Grpcgrp 18831 -gcsg 18833 mulGrpcmgp 20044 1rcur 20085 Ringcrg 20137 algSccascl 21778 var1cv1 22077 Poly1cpl1 22078 Mat cmat 22311 matToPolyMat cmat2pmat 22608 CharPlyMat cchpmat 22730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-fzo 13577 df-seq 13928 df-hash 14257 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-hom 17204 df-cco 17205 df-0g 17364 df-gsum 17365 df-prds 17370 df-pws 17372 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-mhm 18676 df-submnd 18677 df-grp 18834 df-minusg 18835 df-sbg 18836 df-mulg 18966 df-subg 19021 df-ghm 19111 df-cntz 19215 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-subrng 20450 df-subrg 20474 df-lmod 20784 df-lss 20854 df-sra 21096 df-rgmod 21097 df-dsmm 21658 df-frlm 21673 df-ascl 21781 df-psr 21835 df-mvr 21836 df-mpl 21837 df-opsr 21839 df-psr1 22081 df-vr1 22082 df-ply1 22083 df-mamu 22295 df-mat 22312 df-mat2pmat 22611 |
| This theorem is referenced by: chpdmat 22745 |
| Copyright terms: Public domain | W3C validator |