MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdmatlem1 Structured version   Visualization version   GIF version

Theorem chpdmatlem1 20975
Description: Lemma 1 for chpdmat 20978. (Contributed by AV, 18-Aug-2019.)
Hypotheses
Ref Expression
chpdmat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpdmat.p 𝑃 = (Poly1𝑅)
chpdmat.a 𝐴 = (𝑁 Mat 𝑅)
chpdmat.s 𝑆 = (algSc‘𝑃)
chpdmat.b 𝐵 = (Base‘𝐴)
chpdmat.x 𝑋 = (var1𝑅)
chpdmat.0 0 = (0g𝑅)
chpdmat.g 𝐺 = (mulGrp‘𝑃)
chpdmat.m = (-g𝑃)
chpdmatlem.q 𝑄 = (𝑁 Mat 𝑃)
chpdmatlem.1 1 = (1r𝑄)
chpdmatlem.m · = ( ·𝑠𝑄)
chpdmatlem.z 𝑍 = (-g𝑄)
chpdmatlem.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
chpdmatlem1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑋 · 1 )𝑍(𝑇𝑀)) ∈ (Base‘𝑄))

Proof of Theorem chpdmatlem1
StepHypRef Expression
1 chpdmat.p . . . . 5 𝑃 = (Poly1𝑅)
2 chpdmatlem.q . . . . 5 𝑄 = (𝑁 Mat 𝑃)
31, 2pmatring 20830 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
433adant3 1163 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑄 ∈ Ring)
5 ringgrp 18872 . . 3 (𝑄 ∈ Ring → 𝑄 ∈ Grp)
64, 5syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑄 ∈ Grp)
7 chpdmat.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
8 chpdmat.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
9 chpdmat.s . . . 4 𝑆 = (algSc‘𝑃)
10 chpdmat.b . . . 4 𝐵 = (Base‘𝐴)
11 chpdmat.x . . . 4 𝑋 = (var1𝑅)
12 chpdmat.0 . . . 4 0 = (0g𝑅)
13 chpdmat.g . . . 4 𝐺 = (mulGrp‘𝑃)
14 chpdmat.m . . . 4 = (-g𝑃)
15 chpdmatlem.1 . . . 4 1 = (1r𝑄)
16 chpdmatlem.m . . . 4 · = ( ·𝑠𝑄)
177, 1, 8, 9, 10, 11, 12, 13, 14, 2, 15, 16chpdmatlem0 20974 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄))
18173adant3 1163 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑄))
19 chpdmatlem.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
2019, 8, 10, 1, 2mat2pmatbas 20863 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑄))
21 eqid 2803 . . 3 (Base‘𝑄) = (Base‘𝑄)
22 chpdmatlem.z . . 3 𝑍 = (-g𝑄)
2321, 22grpsubcl 17815 . 2 ((𝑄 ∈ Grp ∧ (𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇𝑀) ∈ (Base‘𝑄)) → ((𝑋 · 1 )𝑍(𝑇𝑀)) ∈ (Base‘𝑄))
246, 18, 20, 23syl3anc 1491 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑋 · 1 )𝑍(𝑇𝑀)) ∈ (Base‘𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1108   = wceq 1653  wcel 2157  cfv 6105  (class class class)co 6882  Fincfn 8199  Basecbs 16188   ·𝑠 cvsca 16275  0gc0g 16419  Grpcgrp 17742  -gcsg 17744  mulGrpcmgp 18809  1rcur 18821  Ringcrg 18867  algSccascl 19638  var1cv1 19872  Poly1cpl1 19873   Mat cmat 20542   matToPolyMat cmat2pmat 20841   CharPlyMat cchpmat 20963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2379  ax-ext 2781  ax-rep 4968  ax-sep 4979  ax-nul 4987  ax-pow 5039  ax-pr 5101  ax-un 7187  ax-inf2 8792  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2593  df-eu 2611  df-clab 2790  df-cleq 2796  df-clel 2799  df-nfc 2934  df-ne 2976  df-nel 3079  df-ral 3098  df-rex 3099  df-reu 3100  df-rmo 3101  df-rab 3102  df-v 3391  df-sbc 3638  df-csb 3733  df-dif 3776  df-un 3778  df-in 3780  df-ss 3787  df-pss 3789  df-nul 4120  df-if 4282  df-pw 4355  df-sn 4373  df-pr 4375  df-tp 4377  df-op 4379  df-ot 4381  df-uni 4633  df-int 4672  df-iun 4716  df-iin 4717  df-br 4848  df-opab 4910  df-mpt 4927  df-tr 4950  df-id 5224  df-eprel 5229  df-po 5237  df-so 5238  df-fr 5275  df-se 5276  df-we 5277  df-xp 5322  df-rel 5323  df-cnv 5324  df-co 5325  df-dm 5326  df-rn 5327  df-res 5328  df-ima 5329  df-pred 5902  df-ord 5948  df-on 5949  df-lim 5950  df-suc 5951  df-iota 6068  df-fun 6107  df-fn 6108  df-f 6109  df-f1 6110  df-fo 6111  df-f1o 6112  df-fv 6113  df-isom 6114  df-riota 6843  df-ov 6885  df-oprab 6886  df-mpt2 6887  df-of 7135  df-ofr 7136  df-om 7304  df-1st 7405  df-2nd 7406  df-supp 7537  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-2o 7804  df-oadd 7807  df-er 7986  df-map 8101  df-pm 8102  df-ixp 8153  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-fsupp 8522  df-sup 8594  df-oi 8661  df-card 9055  df-pnf 10369  df-mnf 10370  df-xr 10371  df-ltxr 10372  df-le 10373  df-sub 10562  df-neg 10563  df-nn 11317  df-2 11380  df-3 11381  df-4 11382  df-5 11383  df-6 11384  df-7 11385  df-8 11386  df-9 11387  df-n0 11585  df-z 11671  df-dec 11788  df-uz 11935  df-fz 12585  df-fzo 12725  df-seq 13060  df-hash 13375  df-struct 16190  df-ndx 16191  df-slot 16192  df-base 16194  df-sets 16195  df-ress 16196  df-plusg 16284  df-mulr 16285  df-sca 16287  df-vsca 16288  df-ip 16289  df-tset 16290  df-ple 16291  df-ds 16293  df-hom 16295  df-cco 16296  df-0g 16421  df-gsum 16422  df-prds 16427  df-pws 16429  df-mre 16565  df-mrc 16566  df-acs 16568  df-mgm 17561  df-sgrp 17603  df-mnd 17614  df-mhm 17654  df-submnd 17655  df-grp 17745  df-minusg 17746  df-sbg 17747  df-mulg 17861  df-subg 17908  df-ghm 17975  df-cntz 18066  df-cmn 18514  df-abl 18515  df-mgp 18810  df-ur 18822  df-ring 18869  df-subrg 19100  df-lmod 19187  df-lss 19255  df-sra 19499  df-rgmod 19500  df-ascl 19641  df-psr 19683  df-mvr 19684  df-mpl 19685  df-opsr 19687  df-psr1 19876  df-vr1 19877  df-ply1 19878  df-dsmm 20405  df-frlm 20420  df-mamu 20519  df-mat 20543  df-mat2pmat 20844
This theorem is referenced by:  chpdmat  20978
  Copyright terms: Public domain W3C validator