Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chpdmatlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for chpdmat 21554. (Contributed by AV, 18-Aug-2019.) |
Ref | Expression |
---|---|
chpdmat.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
chpdmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
chpdmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
chpdmat.s | ⊢ 𝑆 = (algSc‘𝑃) |
chpdmat.b | ⊢ 𝐵 = (Base‘𝐴) |
chpdmat.x | ⊢ 𝑋 = (var1‘𝑅) |
chpdmat.0 | ⊢ 0 = (0g‘𝑅) |
chpdmat.g | ⊢ 𝐺 = (mulGrp‘𝑃) |
chpdmat.m | ⊢ − = (-g‘𝑃) |
chpdmatlem.q | ⊢ 𝑄 = (𝑁 Mat 𝑃) |
chpdmatlem.1 | ⊢ 1 = (1r‘𝑄) |
chpdmatlem.m | ⊢ · = ( ·𝑠 ‘𝑄) |
chpdmatlem.z | ⊢ 𝑍 = (-g‘𝑄) |
chpdmatlem.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
Ref | Expression |
---|---|
chpdmatlem1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 )𝑍(𝑇‘𝑀)) ∈ (Base‘𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpdmat.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | chpdmatlem.q | . . . . 5 ⊢ 𝑄 = (𝑁 Mat 𝑃) | |
3 | 1, 2 | pmatring 21405 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring) |
4 | 3 | 3adant3 1129 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑄 ∈ Ring) |
5 | ringgrp 19383 | . . 3 ⊢ (𝑄 ∈ Ring → 𝑄 ∈ Grp) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑄 ∈ Grp) |
7 | chpdmat.c | . . . 4 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
8 | chpdmat.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | chpdmat.s | . . . 4 ⊢ 𝑆 = (algSc‘𝑃) | |
10 | chpdmat.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
11 | chpdmat.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
12 | chpdmat.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
13 | chpdmat.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑃) | |
14 | chpdmat.m | . . . 4 ⊢ − = (-g‘𝑃) | |
15 | chpdmatlem.1 | . . . 4 ⊢ 1 = (1r‘𝑄) | |
16 | chpdmatlem.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑄) | |
17 | 7, 1, 8, 9, 10, 11, 12, 13, 14, 2, 15, 16 | chpdmatlem0 21550 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 · 1 ) ∈ (Base‘𝑄)) |
18 | 17 | 3adant3 1129 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑄)) |
19 | chpdmatlem.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
20 | 19, 8, 10, 1, 2 | mat2pmatbas 21439 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑄)) |
21 | eqid 2758 | . . 3 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
22 | chpdmatlem.z | . . 3 ⊢ 𝑍 = (-g‘𝑄) | |
23 | 21, 22 | grpsubcl 18259 | . 2 ⊢ ((𝑄 ∈ Grp ∧ (𝑋 · 1 ) ∈ (Base‘𝑄) ∧ (𝑇‘𝑀) ∈ (Base‘𝑄)) → ((𝑋 · 1 )𝑍(𝑇‘𝑀)) ∈ (Base‘𝑄)) |
24 | 6, 18, 20, 23 | syl3anc 1368 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 )𝑍(𝑇‘𝑀)) ∈ (Base‘𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6340 (class class class)co 7156 Fincfn 8540 Basecbs 16554 ·𝑠 cvsca 16640 0gc0g 16784 Grpcgrp 18182 -gcsg 18184 mulGrpcmgp 19320 1rcur 19332 Ringcrg 19378 algSccascl 20630 var1cv1 20913 Poly1cpl1 20914 Mat cmat 21120 matToPolyMat cmat2pmat 21417 CharPlyMat cchpmat 21539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-ot 4534 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-ofr 7412 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-sup 8952 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-fz 12953 df-fzo 13096 df-seq 13432 df-hash 13754 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-sca 16652 df-vsca 16653 df-ip 16654 df-tset 16655 df-ple 16656 df-ds 16658 df-hom 16660 df-cco 16661 df-0g 16786 df-gsum 16787 df-prds 16792 df-pws 16794 df-mre 16928 df-mrc 16929 df-acs 16931 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-mhm 18035 df-submnd 18036 df-grp 18185 df-minusg 18186 df-sbg 18187 df-mulg 18305 df-subg 18356 df-ghm 18436 df-cntz 18527 df-cmn 18988 df-abl 18989 df-mgp 19321 df-ur 19333 df-ring 19380 df-subrg 19614 df-lmod 19717 df-lss 19785 df-sra 20025 df-rgmod 20026 df-dsmm 20510 df-frlm 20525 df-ascl 20633 df-psr 20684 df-mvr 20685 df-mpl 20686 df-opsr 20688 df-psr1 20917 df-vr1 20918 df-ply1 20919 df-mamu 21099 df-mat 21121 df-mat2pmat 21420 |
This theorem is referenced by: chpdmat 21554 |
Copyright terms: Public domain | W3C validator |