MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumccatOLD Structured version   Visualization version   GIF version

Theorem gsumccatOLD 18394
Description: Obsolete version of gsumccat 18395 as of 13-Jan-2024. Homomorphic property of composites. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumwcl.b 𝐵 = (Base‘𝐺)
gsumsgrpccat.p + = (+g𝐺)
Assertion
Ref Expression
gsumccatOLD ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))

Proof of Theorem gsumccatOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . 4 (𝑊 = ∅ → (𝑊 ++ 𝑋) = (∅ ++ 𝑋))
21oveq2d 7271 . . 3 (𝑊 = ∅ → (𝐺 Σg (𝑊 ++ 𝑋)) = (𝐺 Σg (∅ ++ 𝑋)))
3 oveq2 7263 . . . . 5 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
4 eqid 2738 . . . . . 6 (0g𝐺) = (0g𝐺)
54gsum0 18283 . . . . 5 (𝐺 Σg ∅) = (0g𝐺)
63, 5eqtrdi 2795 . . . 4 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (0g𝐺))
76oveq1d 7270 . . 3 (𝑊 = ∅ → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋)))
82, 7eqeq12d 2754 . 2 (𝑊 = ∅ → ((𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) ↔ (𝐺 Σg (∅ ++ 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋))))
9 oveq2 7263 . . . . 5 (𝑋 = ∅ → (𝑊 ++ 𝑋) = (𝑊 ++ ∅))
109oveq2d 7271 . . . 4 (𝑋 = ∅ → (𝐺 Σg (𝑊 ++ 𝑋)) = (𝐺 Σg (𝑊 ++ ∅)))
11 oveq2 7263 . . . . . 6 (𝑋 = ∅ → (𝐺 Σg 𝑋) = (𝐺 Σg ∅))
1211, 5eqtrdi 2795 . . . . 5 (𝑋 = ∅ → (𝐺 Σg 𝑋) = (0g𝐺))
1312oveq2d 7271 . . . 4 (𝑋 = ∅ → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((𝐺 Σg 𝑊) + (0g𝐺)))
1410, 13eqeq12d 2754 . . 3 (𝑋 = ∅ → ((𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) ↔ (𝐺 Σg (𝑊 ++ ∅)) = ((𝐺 Σg 𝑊) + (0g𝐺))))
15 gsumwcl.b . . . . . 6 𝐵 = (Base‘𝐺)
16 gsumsgrpccat.p . . . . . 6 + = (+g𝐺)
17 simpl1 1189 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝐺 ∈ Mnd)
18 lennncl 14165 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐵𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
19183ad2antl2 1184 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
2019adantrr 713 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℕ)
21 lennncl 14165 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝐵𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
22213ad2antl3 1185 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
2322adantrl 712 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℕ)
2420, 23nnaddcld 11955 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) ∈ ℕ)
25 nnm1nn0 12204 . . . . . . . 8 (((♯‘𝑊) + (♯‘𝑋)) ∈ ℕ → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ ℕ0)
2624, 25syl 17 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ ℕ0)
27 nn0uz 12549 . . . . . . 7 0 = (ℤ‘0)
2826, 27eleqtrdi 2849 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ (ℤ‘0))
29 simpl2 1190 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊 ∈ Word 𝐵)
30 simpl3 1191 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋 ∈ Word 𝐵)
31 ccatcl 14205 . . . . . . . . 9 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝑊 ++ 𝑋) ∈ Word 𝐵)
3229, 30, 31syl2anc 583 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋) ∈ Word 𝐵)
33 wrdf 14150 . . . . . . . 8 ((𝑊 ++ 𝑋) ∈ Word 𝐵 → (𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵)
3432, 33syl 17 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵)
35 ccatlen 14206 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (♯‘(𝑊 ++ 𝑋)) = ((♯‘𝑊) + (♯‘𝑋)))
3629, 30, 35syl2anc 583 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘(𝑊 ++ 𝑋)) = ((♯‘𝑊) + (♯‘𝑋)))
3736oveq2d 7271 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘(𝑊 ++ 𝑋))) = (0..^((♯‘𝑊) + (♯‘𝑋))))
3820nnzd 12354 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℤ)
3923nnzd 12354 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℤ)
4038, 39zaddcld 12359 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) ∈ ℤ)
41 fzoval 13317 . . . . . . . . . 10 (((♯‘𝑊) + (♯‘𝑋)) ∈ ℤ → (0..^((♯‘𝑊) + (♯‘𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4240, 41syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^((♯‘𝑊) + (♯‘𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4337, 42eqtrd 2778 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘(𝑊 ++ 𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4443feq2d 6570 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵 ↔ (𝑊 ++ 𝑋):(0...(((♯‘𝑊) + (♯‘𝑋)) − 1))⟶𝐵))
4534, 44mpbid 231 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋):(0...(((♯‘𝑊) + (♯‘𝑋)) − 1))⟶𝐵)
4615, 16, 17, 28, 45gsumval2 18285 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)))
47 nnm1nn0 12204 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
4820, 47syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) − 1) ∈ ℕ0)
4948, 27eleqtrdi 2849 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
50 wrdf 14150 . . . . . . . . . 10 (𝑊 ∈ Word 𝐵𝑊:(0..^(♯‘𝑊))⟶𝐵)
5129, 50syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊:(0..^(♯‘𝑊))⟶𝐵)
52 fzoval 13317 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
5338, 52syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
5453feq2d 6570 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊:(0..^(♯‘𝑊))⟶𝐵𝑊:(0...((♯‘𝑊) − 1))⟶𝐵))
5551, 54mpbid 231 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵)
5615, 16, 17, 49, 55gsumval2 18285 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg 𝑊) = (seq0( + , 𝑊)‘((♯‘𝑊) − 1)))
57 nnm1nn0 12204 . . . . . . . . . 10 ((♯‘𝑋) ∈ ℕ → ((♯‘𝑋) − 1) ∈ ℕ0)
5823, 57syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑋) − 1) ∈ ℕ0)
5958, 27eleqtrdi 2849 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑋) − 1) ∈ (ℤ‘0))
60 wrdf 14150 . . . . . . . . . 10 (𝑋 ∈ Word 𝐵𝑋:(0..^(♯‘𝑋))⟶𝐵)
6130, 60syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋:(0..^(♯‘𝑋))⟶𝐵)
62 fzoval 13317 . . . . . . . . . . 11 ((♯‘𝑋) ∈ ℤ → (0..^(♯‘𝑋)) = (0...((♯‘𝑋) − 1)))
6339, 62syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘𝑋)) = (0...((♯‘𝑋) − 1)))
6463feq2d 6570 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑋:(0..^(♯‘𝑋))⟶𝐵𝑋:(0...((♯‘𝑋) − 1))⟶𝐵))
6561, 64mpbid 231 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋:(0...((♯‘𝑋) − 1))⟶𝐵)
6615, 16, 17, 59, 65gsumval2 18285 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg 𝑋) = (seq0( + , 𝑋)‘((♯‘𝑋) − 1)))
6756, 66oveq12d 7273 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
6815, 16mndcl 18308 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
69683expb 1118 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
7017, 69sylan 579 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
7115, 16mndass 18309 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
7217, 71sylan 579 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
73 uzid 12526 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ (ℤ‘(♯‘𝑊)))
7438, 73syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ (ℤ‘(♯‘𝑊)))
75 uzaddcl 12573 . . . . . . . . . 10 (((♯‘𝑊) ∈ (ℤ‘(♯‘𝑊)) ∧ ((♯‘𝑋) − 1) ∈ ℕ0) → ((♯‘𝑊) + ((♯‘𝑋) − 1)) ∈ (ℤ‘(♯‘𝑊)))
7674, 58, 75syl2anc 583 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + ((♯‘𝑋) − 1)) ∈ (ℤ‘(♯‘𝑊)))
7720nncnd 11919 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℂ)
7823nncnd 11919 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℂ)
79 1cnd 10901 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 1 ∈ ℂ)
8077, 78, 79addsubassd 11282 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = ((♯‘𝑊) + ((♯‘𝑋) − 1)))
81 ax-1cn 10860 . . . . . . . . . . 11 1 ∈ ℂ
82 npcan 11160 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
8377, 81, 82sylancl 585 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
8483fveq2d 6760 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (ℤ‘(((♯‘𝑊) − 1) + 1)) = (ℤ‘(♯‘𝑊)))
8576, 80, 843eltr4d 2854 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ (ℤ‘(((♯‘𝑊) − 1) + 1)))
8645ffvelrnda 6943 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...(((♯‘𝑊) + (♯‘𝑋)) − 1))) → ((𝑊 ++ 𝑋)‘𝑥) ∈ 𝐵)
8770, 72, 85, 49, 86seqsplit 13684 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = ((seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) + (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1))))
88 simpll2 1211 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝐵)
89 simpll3 1212 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑋 ∈ Word 𝐵)
9053eleq2d 2824 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
9190biimpar 477 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑥 ∈ (0..^(♯‘𝑊)))
92 ccatval1 14209 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 𝑋)‘𝑥) = (𝑊𝑥))
9388, 89, 91, 92syl3anc 1369 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝑊 ++ 𝑋)‘𝑥) = (𝑊𝑥))
9449, 93seqfveq 13675 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) = (seq0( + , 𝑊)‘((♯‘𝑊) − 1)))
9577addid2d 11106 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0 + (♯‘𝑊)) = (♯‘𝑊))
9683, 95eqtr4d 2781 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) − 1) + 1) = (0 + (♯‘𝑊)))
9796seqeq1d 13655 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋)) = seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋)))
9877, 78addcomd 11107 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) = ((♯‘𝑋) + (♯‘𝑊)))
9998oveq1d 7270 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = (((♯‘𝑋) + (♯‘𝑊)) − 1))
10078, 77, 79addsubd 11283 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑋) + (♯‘𝑊)) − 1) = (((♯‘𝑋) − 1) + (♯‘𝑊)))
10199, 100eqtrd 2778 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = (((♯‘𝑋) − 1) + (♯‘𝑊)))
10297, 101fveq12d 6763 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = (seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋))‘(((♯‘𝑋) − 1) + (♯‘𝑊))))
103 simpll2 1211 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑊 ∈ Word 𝐵)
104 simpll3 1212 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑋 ∈ Word 𝐵)
10563eleq2d 2824 . . . . . . . . . . . . 13 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑥 ∈ (0..^(♯‘𝑋)) ↔ 𝑥 ∈ (0...((♯‘𝑋) − 1))))
106105biimpar 477 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑥 ∈ (0..^(♯‘𝑋)))
107 ccatval3 14212 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑋))) → ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))) = (𝑋𝑥))
108103, 104, 106, 107syl3anc 1369 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))) = (𝑋𝑥))
109108eqcomd 2744 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → (𝑋𝑥) = ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))))
11059, 38, 109seqshft2 13677 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , 𝑋)‘((♯‘𝑋) − 1)) = (seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋))‘(((♯‘𝑋) − 1) + (♯‘𝑊))))
111102, 110eqtr4d 2781 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = (seq0( + , 𝑋)‘((♯‘𝑋) − 1)))
11294, 111oveq12d 7273 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) + (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1))) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
11387, 112eqtrd 2778 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
11467, 113eqtr4d 2781 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)))
11546, 114eqtr4d 2781 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
116115anassrs 467 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑋 ≠ ∅) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
117 simpl2 1190 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word 𝐵)
118 ccatrid 14220 . . . . . 6 (𝑊 ∈ Word 𝐵 → (𝑊 ++ ∅) = 𝑊)
119117, 118syl 17 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑊 ++ ∅) = 𝑊)
120119oveq2d 7271 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ ∅)) = (𝐺 Σg 𝑊))
121 simpl1 1189 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd)
12215gsumwcl 18392 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵)
1231223adant3 1130 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵)
124123adantr 480 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝐵)
12515, 16, 4mndrid 18321 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝐺 Σg 𝑊) ∈ 𝐵) → ((𝐺 Σg 𝑊) + (0g𝐺)) = (𝐺 Σg 𝑊))
126121, 124, 125syl2anc 583 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((𝐺 Σg 𝑊) + (0g𝐺)) = (𝐺 Σg 𝑊))
127120, 126eqtr4d 2781 . . 3 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ ∅)) = ((𝐺 Σg 𝑊) + (0g𝐺)))
12814, 116, 127pm2.61ne 3029 . 2 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
129 ccatlid 14219 . . . . 5 (𝑋 ∈ Word 𝐵 → (∅ ++ 𝑋) = 𝑋)
1301293ad2ant3 1133 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (∅ ++ 𝑋) = 𝑋)
131130oveq2d 7271 . . 3 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (∅ ++ 𝑋)) = (𝐺 Σg 𝑋))
132 simp1 1134 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → 𝐺 ∈ Mnd)
13315gsumwcl 18392 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg 𝑋) ∈ 𝐵)
13415, 16, 4mndlid 18320 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐺 Σg 𝑋) ∈ 𝐵) → ((0g𝐺) + (𝐺 Σg 𝑋)) = (𝐺 Σg 𝑋))
135132, 133, 1343imp3i2an 1343 . . 3 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → ((0g𝐺) + (𝐺 Σg 𝑋)) = (𝐺 Σg 𝑋))
136131, 135eqtr4d 2781 . 2 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (∅ ++ 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋)))
1378, 128, 136pm2.61ne 3029 1 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  c0 4253  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  cmin 11135  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311  seqcseq 13649  chash 13972  Word cword 14145   ++ cconcat 14201  Basecbs 16840  +gcplusg 16888  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-concat 14202  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator