MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumccatOLD Structured version   Visualization version   GIF version

Theorem gsumccatOLD 17997
Description: Obsolete version of gsumccat 17998 as of 13-Jan-2024. Homomorphic property of composites. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumwcl.b 𝐵 = (Base‘𝐺)
gsumsgrpccat.p + = (+g𝐺)
Assertion
Ref Expression
gsumccatOLD ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))

Proof of Theorem gsumccatOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7142 . . . 4 (𝑊 = ∅ → (𝑊 ++ 𝑋) = (∅ ++ 𝑋))
21oveq2d 7151 . . 3 (𝑊 = ∅ → (𝐺 Σg (𝑊 ++ 𝑋)) = (𝐺 Σg (∅ ++ 𝑋)))
3 oveq2 7143 . . . . 5 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
4 eqid 2798 . . . . . 6 (0g𝐺) = (0g𝐺)
54gsum0 17886 . . . . 5 (𝐺 Σg ∅) = (0g𝐺)
63, 5eqtrdi 2849 . . . 4 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (0g𝐺))
76oveq1d 7150 . . 3 (𝑊 = ∅ → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋)))
82, 7eqeq12d 2814 . 2 (𝑊 = ∅ → ((𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) ↔ (𝐺 Σg (∅ ++ 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋))))
9 oveq2 7143 . . . . 5 (𝑋 = ∅ → (𝑊 ++ 𝑋) = (𝑊 ++ ∅))
109oveq2d 7151 . . . 4 (𝑋 = ∅ → (𝐺 Σg (𝑊 ++ 𝑋)) = (𝐺 Σg (𝑊 ++ ∅)))
11 oveq2 7143 . . . . . 6 (𝑋 = ∅ → (𝐺 Σg 𝑋) = (𝐺 Σg ∅))
1211, 5eqtrdi 2849 . . . . 5 (𝑋 = ∅ → (𝐺 Σg 𝑋) = (0g𝐺))
1312oveq2d 7151 . . . 4 (𝑋 = ∅ → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((𝐺 Σg 𝑊) + (0g𝐺)))
1410, 13eqeq12d 2814 . . 3 (𝑋 = ∅ → ((𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) ↔ (𝐺 Σg (𝑊 ++ ∅)) = ((𝐺 Σg 𝑊) + (0g𝐺))))
15 gsumwcl.b . . . . . 6 𝐵 = (Base‘𝐺)
16 gsumsgrpccat.p . . . . . 6 + = (+g𝐺)
17 simpl1 1188 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝐺 ∈ Mnd)
18 lennncl 13877 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐵𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
19183ad2antl2 1183 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
2019adantrr 716 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℕ)
21 lennncl 13877 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝐵𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
22213ad2antl3 1184 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
2322adantrl 715 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℕ)
2420, 23nnaddcld 11677 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) ∈ ℕ)
25 nnm1nn0 11926 . . . . . . . 8 (((♯‘𝑊) + (♯‘𝑋)) ∈ ℕ → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ ℕ0)
2624, 25syl 17 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ ℕ0)
27 nn0uz 12268 . . . . . . 7 0 = (ℤ‘0)
2826, 27eleqtrdi 2900 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ (ℤ‘0))
29 simpl2 1189 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊 ∈ Word 𝐵)
30 simpl3 1190 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋 ∈ Word 𝐵)
31 ccatcl 13917 . . . . . . . . 9 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝑊 ++ 𝑋) ∈ Word 𝐵)
3229, 30, 31syl2anc 587 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋) ∈ Word 𝐵)
33 wrdf 13862 . . . . . . . 8 ((𝑊 ++ 𝑋) ∈ Word 𝐵 → (𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵)
3432, 33syl 17 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵)
35 ccatlen 13918 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (♯‘(𝑊 ++ 𝑋)) = ((♯‘𝑊) + (♯‘𝑋)))
3629, 30, 35syl2anc 587 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘(𝑊 ++ 𝑋)) = ((♯‘𝑊) + (♯‘𝑋)))
3736oveq2d 7151 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘(𝑊 ++ 𝑋))) = (0..^((♯‘𝑊) + (♯‘𝑋))))
3820nnzd 12074 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℤ)
3923nnzd 12074 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℤ)
4038, 39zaddcld 12079 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) ∈ ℤ)
41 fzoval 13034 . . . . . . . . . 10 (((♯‘𝑊) + (♯‘𝑋)) ∈ ℤ → (0..^((♯‘𝑊) + (♯‘𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4240, 41syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^((♯‘𝑊) + (♯‘𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4337, 42eqtrd 2833 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘(𝑊 ++ 𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4443feq2d 6473 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵 ↔ (𝑊 ++ 𝑋):(0...(((♯‘𝑊) + (♯‘𝑋)) − 1))⟶𝐵))
4534, 44mpbid 235 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋):(0...(((♯‘𝑊) + (♯‘𝑋)) − 1))⟶𝐵)
4615, 16, 17, 28, 45gsumval2 17888 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)))
47 nnm1nn0 11926 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
4820, 47syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) − 1) ∈ ℕ0)
4948, 27eleqtrdi 2900 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
50 wrdf 13862 . . . . . . . . . 10 (𝑊 ∈ Word 𝐵𝑊:(0..^(♯‘𝑊))⟶𝐵)
5129, 50syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊:(0..^(♯‘𝑊))⟶𝐵)
52 fzoval 13034 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
5338, 52syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
5453feq2d 6473 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊:(0..^(♯‘𝑊))⟶𝐵𝑊:(0...((♯‘𝑊) − 1))⟶𝐵))
5551, 54mpbid 235 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵)
5615, 16, 17, 49, 55gsumval2 17888 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg 𝑊) = (seq0( + , 𝑊)‘((♯‘𝑊) − 1)))
57 nnm1nn0 11926 . . . . . . . . . 10 ((♯‘𝑋) ∈ ℕ → ((♯‘𝑋) − 1) ∈ ℕ0)
5823, 57syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑋) − 1) ∈ ℕ0)
5958, 27eleqtrdi 2900 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑋) − 1) ∈ (ℤ‘0))
60 wrdf 13862 . . . . . . . . . 10 (𝑋 ∈ Word 𝐵𝑋:(0..^(♯‘𝑋))⟶𝐵)
6130, 60syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋:(0..^(♯‘𝑋))⟶𝐵)
62 fzoval 13034 . . . . . . . . . . 11 ((♯‘𝑋) ∈ ℤ → (0..^(♯‘𝑋)) = (0...((♯‘𝑋) − 1)))
6339, 62syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘𝑋)) = (0...((♯‘𝑋) − 1)))
6463feq2d 6473 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑋:(0..^(♯‘𝑋))⟶𝐵𝑋:(0...((♯‘𝑋) − 1))⟶𝐵))
6561, 64mpbid 235 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋:(0...((♯‘𝑋) − 1))⟶𝐵)
6615, 16, 17, 59, 65gsumval2 17888 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg 𝑋) = (seq0( + , 𝑋)‘((♯‘𝑋) − 1)))
6756, 66oveq12d 7153 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
6815, 16mndcl 17911 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
69683expb 1117 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
7017, 69sylan 583 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
7115, 16mndass 17912 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
7217, 71sylan 583 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
73 uzid 12246 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ (ℤ‘(♯‘𝑊)))
7438, 73syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ (ℤ‘(♯‘𝑊)))
75 uzaddcl 12292 . . . . . . . . . 10 (((♯‘𝑊) ∈ (ℤ‘(♯‘𝑊)) ∧ ((♯‘𝑋) − 1) ∈ ℕ0) → ((♯‘𝑊) + ((♯‘𝑋) − 1)) ∈ (ℤ‘(♯‘𝑊)))
7674, 58, 75syl2anc 587 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + ((♯‘𝑋) − 1)) ∈ (ℤ‘(♯‘𝑊)))
7720nncnd 11641 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℂ)
7823nncnd 11641 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℂ)
79 1cnd 10625 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 1 ∈ ℂ)
8077, 78, 79addsubassd 11006 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = ((♯‘𝑊) + ((♯‘𝑋) − 1)))
81 ax-1cn 10584 . . . . . . . . . . 11 1 ∈ ℂ
82 npcan 10884 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
8377, 81, 82sylancl 589 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
8483fveq2d 6649 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (ℤ‘(((♯‘𝑊) − 1) + 1)) = (ℤ‘(♯‘𝑊)))
8576, 80, 843eltr4d 2905 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ (ℤ‘(((♯‘𝑊) − 1) + 1)))
8645ffvelrnda 6828 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...(((♯‘𝑊) + (♯‘𝑋)) − 1))) → ((𝑊 ++ 𝑋)‘𝑥) ∈ 𝐵)
8770, 72, 85, 49, 86seqsplit 13399 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = ((seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) + (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1))))
88 simpll2 1210 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝐵)
89 simpll3 1211 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑋 ∈ Word 𝐵)
9053eleq2d 2875 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
9190biimpar 481 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑥 ∈ (0..^(♯‘𝑊)))
92 ccatval1 13921 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 𝑋)‘𝑥) = (𝑊𝑥))
9388, 89, 91, 92syl3anc 1368 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝑊 ++ 𝑋)‘𝑥) = (𝑊𝑥))
9449, 93seqfveq 13390 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) = (seq0( + , 𝑊)‘((♯‘𝑊) − 1)))
9577addid2d 10830 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0 + (♯‘𝑊)) = (♯‘𝑊))
9683, 95eqtr4d 2836 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) − 1) + 1) = (0 + (♯‘𝑊)))
9796seqeq1d 13370 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋)) = seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋)))
9877, 78addcomd 10831 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) = ((♯‘𝑋) + (♯‘𝑊)))
9998oveq1d 7150 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = (((♯‘𝑋) + (♯‘𝑊)) − 1))
10078, 77, 79addsubd 11007 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑋) + (♯‘𝑊)) − 1) = (((♯‘𝑋) − 1) + (♯‘𝑊)))
10199, 100eqtrd 2833 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = (((♯‘𝑋) − 1) + (♯‘𝑊)))
10297, 101fveq12d 6652 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = (seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋))‘(((♯‘𝑋) − 1) + (♯‘𝑊))))
103 simpll2 1210 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑊 ∈ Word 𝐵)
104 simpll3 1211 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑋 ∈ Word 𝐵)
10563eleq2d 2875 . . . . . . . . . . . . 13 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑥 ∈ (0..^(♯‘𝑋)) ↔ 𝑥 ∈ (0...((♯‘𝑋) − 1))))
106105biimpar 481 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑥 ∈ (0..^(♯‘𝑋)))
107 ccatval3 13924 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑋))) → ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))) = (𝑋𝑥))
108103, 104, 106, 107syl3anc 1368 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))) = (𝑋𝑥))
109108eqcomd 2804 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → (𝑋𝑥) = ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))))
11059, 38, 109seqshft2 13392 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , 𝑋)‘((♯‘𝑋) − 1)) = (seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋))‘(((♯‘𝑋) − 1) + (♯‘𝑊))))
111102, 110eqtr4d 2836 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = (seq0( + , 𝑋)‘((♯‘𝑋) − 1)))
11294, 111oveq12d 7153 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) + (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1))) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
11387, 112eqtrd 2833 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
11467, 113eqtr4d 2836 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)))
11546, 114eqtr4d 2836 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
116115anassrs 471 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑋 ≠ ∅) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
117 simpl2 1189 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word 𝐵)
118 ccatrid 13932 . . . . . 6 (𝑊 ∈ Word 𝐵 → (𝑊 ++ ∅) = 𝑊)
119117, 118syl 17 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑊 ++ ∅) = 𝑊)
120119oveq2d 7151 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ ∅)) = (𝐺 Σg 𝑊))
121 simpl1 1188 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd)
12215gsumwcl 17995 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵)
1231223adant3 1129 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵)
124123adantr 484 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝐵)
12515, 16, 4mndrid 17924 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝐺 Σg 𝑊) ∈ 𝐵) → ((𝐺 Σg 𝑊) + (0g𝐺)) = (𝐺 Σg 𝑊))
126121, 124, 125syl2anc 587 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((𝐺 Σg 𝑊) + (0g𝐺)) = (𝐺 Σg 𝑊))
127120, 126eqtr4d 2836 . . 3 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ ∅)) = ((𝐺 Σg 𝑊) + (0g𝐺)))
12814, 116, 127pm2.61ne 3072 . 2 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
129 ccatlid 13931 . . . . 5 (𝑋 ∈ Word 𝐵 → (∅ ++ 𝑋) = 𝑋)
1301293ad2ant3 1132 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (∅ ++ 𝑋) = 𝑋)
131130oveq2d 7151 . . 3 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (∅ ++ 𝑋)) = (𝐺 Σg 𝑋))
132 simp1 1133 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → 𝐺 ∈ Mnd)
13315gsumwcl 17995 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg 𝑋) ∈ 𝐵)
13415, 16, 4mndlid 17923 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐺 Σg 𝑋) ∈ 𝐵) → ((0g𝐺) + (𝐺 Σg 𝑋)) = (𝐺 Σg 𝑋))
135132, 133, 1343imp3i2an 1342 . . 3 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → ((0g𝐺) + (𝐺 Σg 𝑋)) = (𝐺 Σg 𝑋))
136131, 135eqtr4d 2836 . 2 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (∅ ++ 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋)))
1378, 128, 136pm2.61ne 3072 1 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  c0 4243  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  cn 11625  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  ..^cfzo 13028  seqcseq 13364  chash 13686  Word cword 13857   ++ cconcat 13913  Basecbs 16475  +gcplusg 16557  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-word 13858  df-concat 13914  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator