MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumccatOLD Structured version   Visualization version   GIF version

Theorem gsumccatOLD 17997
Description: Obsolete version of gsumccat 17998 as of 13-Jan-2024. Homomorphic property of composites. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumwcl.b 𝐵 = (Base‘𝐺)
gsumsgrpccat.p + = (+g𝐺)
Assertion
Ref Expression
gsumccatOLD ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))

Proof of Theorem gsumccatOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7155 . . . 4 (𝑊 = ∅ → (𝑊 ++ 𝑋) = (∅ ++ 𝑋))
21oveq2d 7164 . . 3 (𝑊 = ∅ → (𝐺 Σg (𝑊 ++ 𝑋)) = (𝐺 Σg (∅ ++ 𝑋)))
3 oveq2 7156 . . . . 5 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
4 eqid 2819 . . . . . 6 (0g𝐺) = (0g𝐺)
54gsum0 17886 . . . . 5 (𝐺 Σg ∅) = (0g𝐺)
63, 5syl6eq 2870 . . . 4 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (0g𝐺))
76oveq1d 7163 . . 3 (𝑊 = ∅ → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋)))
82, 7eqeq12d 2835 . 2 (𝑊 = ∅ → ((𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) ↔ (𝐺 Σg (∅ ++ 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋))))
9 oveq2 7156 . . . . 5 (𝑋 = ∅ → (𝑊 ++ 𝑋) = (𝑊 ++ ∅))
109oveq2d 7164 . . . 4 (𝑋 = ∅ → (𝐺 Σg (𝑊 ++ 𝑋)) = (𝐺 Σg (𝑊 ++ ∅)))
11 oveq2 7156 . . . . . 6 (𝑋 = ∅ → (𝐺 Σg 𝑋) = (𝐺 Σg ∅))
1211, 5syl6eq 2870 . . . . 5 (𝑋 = ∅ → (𝐺 Σg 𝑋) = (0g𝐺))
1312oveq2d 7164 . . . 4 (𝑋 = ∅ → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((𝐺 Σg 𝑊) + (0g𝐺)))
1410, 13eqeq12d 2835 . . 3 (𝑋 = ∅ → ((𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) ↔ (𝐺 Σg (𝑊 ++ ∅)) = ((𝐺 Σg 𝑊) + (0g𝐺))))
15 gsumwcl.b . . . . . 6 𝐵 = (Base‘𝐺)
16 gsumsgrpccat.p . . . . . 6 + = (+g𝐺)
17 simpl1 1185 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝐺 ∈ Mnd)
18 lennncl 13876 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐵𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
19183ad2antl2 1180 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
2019adantrr 715 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℕ)
21 lennncl 13876 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝐵𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
22213ad2antl3 1181 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
2322adantrl 714 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℕ)
2420, 23nnaddcld 11681 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) ∈ ℕ)
25 nnm1nn0 11930 . . . . . . . 8 (((♯‘𝑊) + (♯‘𝑋)) ∈ ℕ → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ ℕ0)
2624, 25syl 17 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ ℕ0)
27 nn0uz 12272 . . . . . . 7 0 = (ℤ‘0)
2826, 27eleqtrdi 2921 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ (ℤ‘0))
29 simpl2 1186 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊 ∈ Word 𝐵)
30 simpl3 1187 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋 ∈ Word 𝐵)
31 ccatcl 13918 . . . . . . . . 9 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝑊 ++ 𝑋) ∈ Word 𝐵)
3229, 30, 31syl2anc 586 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋) ∈ Word 𝐵)
33 wrdf 13858 . . . . . . . 8 ((𝑊 ++ 𝑋) ∈ Word 𝐵 → (𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵)
3432, 33syl 17 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵)
35 ccatlen 13919 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (♯‘(𝑊 ++ 𝑋)) = ((♯‘𝑊) + (♯‘𝑋)))
3629, 30, 35syl2anc 586 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘(𝑊 ++ 𝑋)) = ((♯‘𝑊) + (♯‘𝑋)))
3736oveq2d 7164 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘(𝑊 ++ 𝑋))) = (0..^((♯‘𝑊) + (♯‘𝑋))))
3820nnzd 12078 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℤ)
3923nnzd 12078 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℤ)
4038, 39zaddcld 12083 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) ∈ ℤ)
41 fzoval 13031 . . . . . . . . . 10 (((♯‘𝑊) + (♯‘𝑋)) ∈ ℤ → (0..^((♯‘𝑊) + (♯‘𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4240, 41syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^((♯‘𝑊) + (♯‘𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4337, 42eqtrd 2854 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘(𝑊 ++ 𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4443feq2d 6493 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵 ↔ (𝑊 ++ 𝑋):(0...(((♯‘𝑊) + (♯‘𝑋)) − 1))⟶𝐵))
4534, 44mpbid 234 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋):(0...(((♯‘𝑊) + (♯‘𝑋)) − 1))⟶𝐵)
4615, 16, 17, 28, 45gsumval2 17888 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)))
47 nnm1nn0 11930 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
4820, 47syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) − 1) ∈ ℕ0)
4948, 27eleqtrdi 2921 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
50 wrdf 13858 . . . . . . . . . 10 (𝑊 ∈ Word 𝐵𝑊:(0..^(♯‘𝑊))⟶𝐵)
5129, 50syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊:(0..^(♯‘𝑊))⟶𝐵)
52 fzoval 13031 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
5338, 52syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
5453feq2d 6493 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊:(0..^(♯‘𝑊))⟶𝐵𝑊:(0...((♯‘𝑊) − 1))⟶𝐵))
5551, 54mpbid 234 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵)
5615, 16, 17, 49, 55gsumval2 17888 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg 𝑊) = (seq0( + , 𝑊)‘((♯‘𝑊) − 1)))
57 nnm1nn0 11930 . . . . . . . . . 10 ((♯‘𝑋) ∈ ℕ → ((♯‘𝑋) − 1) ∈ ℕ0)
5823, 57syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑋) − 1) ∈ ℕ0)
5958, 27eleqtrdi 2921 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑋) − 1) ∈ (ℤ‘0))
60 wrdf 13858 . . . . . . . . . 10 (𝑋 ∈ Word 𝐵𝑋:(0..^(♯‘𝑋))⟶𝐵)
6130, 60syl 17 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋:(0..^(♯‘𝑋))⟶𝐵)
62 fzoval 13031 . . . . . . . . . . 11 ((♯‘𝑋) ∈ ℤ → (0..^(♯‘𝑋)) = (0...((♯‘𝑋) − 1)))
6339, 62syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘𝑋)) = (0...((♯‘𝑋) − 1)))
6463feq2d 6493 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑋:(0..^(♯‘𝑋))⟶𝐵𝑋:(0...((♯‘𝑋) − 1))⟶𝐵))
6561, 64mpbid 234 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋:(0...((♯‘𝑋) − 1))⟶𝐵)
6615, 16, 17, 59, 65gsumval2 17888 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg 𝑋) = (seq0( + , 𝑋)‘((♯‘𝑋) − 1)))
6756, 66oveq12d 7166 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
6815, 16mndcl 17911 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
69683expb 1114 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
7017, 69sylan 582 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
7115, 16mndass 17912 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
7217, 71sylan 582 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
73 uzid 12250 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ (ℤ‘(♯‘𝑊)))
7438, 73syl 17 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ (ℤ‘(♯‘𝑊)))
75 uzaddcl 12296 . . . . . . . . . 10 (((♯‘𝑊) ∈ (ℤ‘(♯‘𝑊)) ∧ ((♯‘𝑋) − 1) ∈ ℕ0) → ((♯‘𝑊) + ((♯‘𝑋) − 1)) ∈ (ℤ‘(♯‘𝑊)))
7674, 58, 75syl2anc 586 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + ((♯‘𝑋) − 1)) ∈ (ℤ‘(♯‘𝑊)))
7720nncnd 11646 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℂ)
7823nncnd 11646 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℂ)
79 1cnd 10628 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 1 ∈ ℂ)
8077, 78, 79addsubassd 11009 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = ((♯‘𝑊) + ((♯‘𝑋) − 1)))
81 ax-1cn 10587 . . . . . . . . . . 11 1 ∈ ℂ
82 npcan 10887 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
8377, 81, 82sylancl 588 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
8483fveq2d 6667 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (ℤ‘(((♯‘𝑊) − 1) + 1)) = (ℤ‘(♯‘𝑊)))
8576, 80, 843eltr4d 2926 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ (ℤ‘(((♯‘𝑊) − 1) + 1)))
8645ffvelrnda 6844 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...(((♯‘𝑊) + (♯‘𝑋)) − 1))) → ((𝑊 ++ 𝑋)‘𝑥) ∈ 𝐵)
8770, 72, 85, 49, 86seqsplit 13395 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = ((seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) + (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1))))
88 simpll2 1207 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝐵)
89 simpll3 1208 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑋 ∈ Word 𝐵)
9053eleq2d 2896 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
9190biimpar 480 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑥 ∈ (0..^(♯‘𝑊)))
92 ccatval1 13922 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 𝑋)‘𝑥) = (𝑊𝑥))
9388, 89, 91, 92syl3anc 1365 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝑊 ++ 𝑋)‘𝑥) = (𝑊𝑥))
9449, 93seqfveq 13386 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) = (seq0( + , 𝑊)‘((♯‘𝑊) − 1)))
9577addid2d 10833 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0 + (♯‘𝑊)) = (♯‘𝑊))
9683, 95eqtr4d 2857 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) − 1) + 1) = (0 + (♯‘𝑊)))
9796seqeq1d 13367 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋)) = seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋)))
9877, 78addcomd 10834 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) = ((♯‘𝑋) + (♯‘𝑊)))
9998oveq1d 7163 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = (((♯‘𝑋) + (♯‘𝑊)) − 1))
10078, 77, 79addsubd 11010 . . . . . . . . . . 11 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑋) + (♯‘𝑊)) − 1) = (((♯‘𝑋) − 1) + (♯‘𝑊)))
10199, 100eqtrd 2854 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = (((♯‘𝑋) − 1) + (♯‘𝑊)))
10297, 101fveq12d 6670 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = (seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋))‘(((♯‘𝑋) − 1) + (♯‘𝑊))))
103 simpll2 1207 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑊 ∈ Word 𝐵)
104 simpll3 1208 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑋 ∈ Word 𝐵)
10563eleq2d 2896 . . . . . . . . . . . . 13 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑥 ∈ (0..^(♯‘𝑋)) ↔ 𝑥 ∈ (0...((♯‘𝑋) − 1))))
106105biimpar 480 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑥 ∈ (0..^(♯‘𝑋)))
107 ccatval3 13925 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑋))) → ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))) = (𝑋𝑥))
108103, 104, 106, 107syl3anc 1365 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))) = (𝑋𝑥))
109108eqcomd 2825 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → (𝑋𝑥) = ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))))
11059, 38, 109seqshft2 13388 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , 𝑋)‘((♯‘𝑋) − 1)) = (seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋))‘(((♯‘𝑋) − 1) + (♯‘𝑊))))
111102, 110eqtr4d 2857 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = (seq0( + , 𝑋)‘((♯‘𝑋) − 1)))
11294, 111oveq12d 7166 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) + (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1))) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
11387, 112eqtrd 2854 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
11467, 113eqtr4d 2857 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)))
11546, 114eqtr4d 2857 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
116115anassrs 470 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑋 ≠ ∅) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
117 simpl2 1186 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word 𝐵)
118 ccatrid 13933 . . . . . 6 (𝑊 ∈ Word 𝐵 → (𝑊 ++ ∅) = 𝑊)
119117, 118syl 17 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑊 ++ ∅) = 𝑊)
120119oveq2d 7164 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ ∅)) = (𝐺 Σg 𝑊))
121 simpl1 1185 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd)
12215gsumwcl 17995 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵)
1231223adant3 1126 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵)
124123adantr 483 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝐵)
12515, 16, 4mndrid 17924 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝐺 Σg 𝑊) ∈ 𝐵) → ((𝐺 Σg 𝑊) + (0g𝐺)) = (𝐺 Σg 𝑊))
126121, 124, 125syl2anc 586 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((𝐺 Σg 𝑊) + (0g𝐺)) = (𝐺 Σg 𝑊))
127120, 126eqtr4d 2857 . . 3 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ ∅)) = ((𝐺 Σg 𝑊) + (0g𝐺)))
12814, 116, 127pm2.61ne 3100 . 2 (((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
129 ccatlid 13932 . . . . 5 (𝑋 ∈ Word 𝐵 → (∅ ++ 𝑋) = 𝑋)
1301293ad2ant3 1129 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (∅ ++ 𝑋) = 𝑋)
131130oveq2d 7164 . . 3 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (∅ ++ 𝑋)) = (𝐺 Σg 𝑋))
132 simp1 1130 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → 𝐺 ∈ Mnd)
13315gsumwcl 17995 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg 𝑋) ∈ 𝐵)
13415, 16, 4mndlid 17923 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐺 Σg 𝑋) ∈ 𝐵) → ((0g𝐺) + (𝐺 Σg 𝑋)) = (𝐺 Σg 𝑋))
135132, 133, 1343imp3i2an 1339 . . 3 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → ((0g𝐺) + (𝐺 Σg 𝑋)) = (𝐺 Σg 𝑋))
136131, 135eqtr4d 2857 . 2 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (∅ ++ 𝑋)) = ((0g𝐺) + (𝐺 Σg 𝑋)))
1378, 128, 136pm2.61ne 3100 1 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1081   = wceq 1530  wcel 2107  wne 3014  c0 4289  wf 6344  cfv 6348  (class class class)co 7148  cc 10527  0cc0 10529  1c1 10530   + caddc 10532  cmin 10862  cn 11630  0cn0 11889  cz 11973  cuz 12235  ...cfz 12884  ..^cfzo 13025  seqcseq 13361  chash 13682  Word cword 13853   ++ cconcat 13914  Basecbs 16475  +gcplusg 16557  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-word 13854  df-concat 13915  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator