Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ffvelrnda | Structured version Visualization version GIF version |
Description: A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
ffvelrnd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
ffvelrnda | ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelrnd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffvelrn 6941 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
Copyright terms: Public domain | W3C validator |