| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrascl | Structured version Visualization version GIF version | ||
| Description: Value of the scalar injection into the power series algebra. (Contributed by SN, 18-May-2025.) |
| Ref | Expression |
|---|---|
| psrascl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrascl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrascl.z | ⊢ 0 = (0g‘𝑅) |
| psrascl.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrascl.a | ⊢ 𝐴 = (algSc‘𝑆) |
| psrascl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrascl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| psrascl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| psrascl | ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrascl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 2 | psrascl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | psrascl.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 4 | psrascl.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | psrascl.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | 3, 4, 5 | psrsca 21921 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) |
| 7 | 6 | fveq2d 6890 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑆))) |
| 8 | 2, 7 | eqtrid 2781 | . . . 4 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑆))) |
| 9 | 1, 8 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑆))) |
| 10 | psrascl.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑆) | |
| 11 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 12 | eqid 2734 | . . . 4 ⊢ (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) | |
| 13 | eqid 2734 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 14 | eqid 2734 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 15 | 10, 11, 12, 13, 14 | asclval 21854 | . . 3 ⊢ (𝑋 ∈ (Base‘(Scalar‘𝑆)) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆))) |
| 16 | 9, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆))) |
| 17 | eqid 2734 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 18 | eqid 2734 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | psrascl.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 20 | 3, 4, 5 | psrring 21944 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 21 | 17, 14 | ringidcl 20230 | . . . 4 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 23 | 3, 13, 2, 17, 18, 19, 1, 22 | psrvsca 21923 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆)) = ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆))) |
| 24 | fnconstg 6776 | . . . . 5 ⊢ (𝑋 ∈ 𝐾 → (𝐷 × {𝑋}) Fn 𝐷) | |
| 25 | 1, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐷 × {𝑋}) Fn 𝐷) |
| 26 | 3, 2, 19, 17, 22 | psrelbas 21908 | . . . . 5 ⊢ (𝜑 → (1r‘𝑆):𝐷⟶𝐾) |
| 27 | 26 | ffnd 6717 | . . . 4 ⊢ (𝜑 → (1r‘𝑆) Fn 𝐷) |
| 28 | ovexd 7448 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 29 | 19, 28 | rabexd 5320 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 30 | inidm 4207 | . . . 4 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
| 31 | fvconst2g 7204 | . . . . 5 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑦 ∈ 𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋) | |
| 32 | 1, 31 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋) |
| 33 | psrascl.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 34 | eqid 2734 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 35 | 3, 4, 5, 19, 33, 34, 14 | psr1 21945 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑆) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))) |
| 36 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (1r‘𝑆) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))) |
| 37 | 36 | fveq1d 6888 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1r‘𝑆)‘𝑦) = ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦)) |
| 38 | eqeq1 2738 | . . . . . . . 8 ⊢ (𝑑 = 𝑦 → (𝑑 = (𝐼 × {0}) ↔ 𝑦 = (𝐼 × {0}))) | |
| 39 | 38 | ifbid 4529 | . . . . . . 7 ⊢ (𝑑 = 𝑦 → if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 40 | eqid 2734 | . . . . . . 7 ⊢ (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 )) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 )) | |
| 41 | fvex 6899 | . . . . . . . 8 ⊢ (1r‘𝑅) ∈ V | |
| 42 | 33 | fvexi 6900 | . . . . . . . 8 ⊢ 0 ∈ V |
| 43 | 41, 42 | ifex 4556 | . . . . . . 7 ⊢ if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 ) ∈ V |
| 44 | 39, 40, 43 | fvmpt 6996 | . . . . . 6 ⊢ (𝑦 ∈ 𝐷 → ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 45 | 44 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 46 | 37, 45 | eqtrd 2769 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1r‘𝑆)‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 47 | 25, 27, 29, 29, 30, 32, 46 | offval 7688 | . . 3 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆)) = (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )))) |
| 48 | ovif2 7514 | . . . . 5 ⊢ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), (𝑋(.r‘𝑅)(1r‘𝑅)), (𝑋(.r‘𝑅) 0 )) | |
| 49 | 2, 18, 34, 5, 1 | ringridmd 20238 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅)(1r‘𝑅)) = 𝑋) |
| 50 | 2, 18, 33, 5, 1 | ringrzd 20261 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅) 0 ) = 0 ) |
| 51 | 49, 50 | ifeq12d 4527 | . . . . 5 ⊢ (𝜑 → if(𝑦 = (𝐼 × {0}), (𝑋(.r‘𝑅)(1r‘𝑅)), (𝑋(.r‘𝑅) 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 )) |
| 52 | 48, 51 | eqtrid 2781 | . . . 4 ⊢ (𝜑 → (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 )) |
| 53 | 52 | mpteq2dv 5224 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| 54 | 47, 53 | eqtrd 2769 | . 2 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆)) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| 55 | 16, 23, 54 | 3eqtrd 2773 | 1 ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 ifcif 4505 {csn 4606 ↦ cmpt 5205 × cxp 5663 ◡ccnv 5664 “ cima 5668 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 ∘f cof 7677 ↑m cmap 8848 Fincfn 8967 0cc0 11137 ℕcn 12248 ℕ0cn0 12509 Basecbs 17229 .rcmulr 17274 Scalarcsca 17276 ·𝑠 cvsca 17277 0gc0g 17455 1rcur 20146 Ringcrg 20198 algSccascl 21826 mPwSer cmps 21878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14352 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-hom 17297 df-cco 17298 df-0g 17457 df-gsum 17458 df-prds 17463 df-pws 17465 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-submnd 18766 df-grp 18923 df-minusg 18924 df-mulg 19055 df-ghm 19200 df-cntz 19304 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-ascl 21829 df-psr 21883 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |