| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrascl | Structured version Visualization version GIF version | ||
| Description: Value of the scalar injection into the power series algebra. (Contributed by SN, 18-May-2025.) |
| Ref | Expression |
|---|---|
| psrascl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrascl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrascl.z | ⊢ 0 = (0g‘𝑅) |
| psrascl.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrascl.a | ⊢ 𝐴 = (algSc‘𝑆) |
| psrascl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrascl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| psrascl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| psrascl | ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrascl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 2 | psrascl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | psrascl.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 4 | psrascl.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | psrascl.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | 3, 4, 5 | psrsca 21832 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) |
| 7 | 6 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑆))) |
| 8 | 2, 7 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑆))) |
| 9 | 1, 8 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑆))) |
| 10 | psrascl.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑆) | |
| 11 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 12 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) | |
| 13 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 14 | eqid 2729 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 15 | 10, 11, 12, 13, 14 | asclval 21765 | . . 3 ⊢ (𝑋 ∈ (Base‘(Scalar‘𝑆)) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆))) |
| 16 | 9, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆))) |
| 17 | eqid 2729 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 18 | eqid 2729 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | psrascl.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 20 | 3, 4, 5 | psrring 21855 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 21 | 17, 14 | ringidcl 20150 | . . . 4 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 23 | 3, 13, 2, 17, 18, 19, 1, 22 | psrvsca 21834 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆)) = ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆))) |
| 24 | fnconstg 6730 | . . . . 5 ⊢ (𝑋 ∈ 𝐾 → (𝐷 × {𝑋}) Fn 𝐷) | |
| 25 | 1, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐷 × {𝑋}) Fn 𝐷) |
| 26 | 3, 2, 19, 17, 22 | psrelbas 21819 | . . . . 5 ⊢ (𝜑 → (1r‘𝑆):𝐷⟶𝐾) |
| 27 | 26 | ffnd 6671 | . . . 4 ⊢ (𝜑 → (1r‘𝑆) Fn 𝐷) |
| 28 | ovexd 7404 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 29 | 19, 28 | rabexd 5290 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 30 | inidm 4186 | . . . 4 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
| 31 | fvconst2g 7158 | . . . . 5 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑦 ∈ 𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋) | |
| 32 | 1, 31 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋) |
| 33 | psrascl.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 34 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 35 | 3, 4, 5, 19, 33, 34, 14 | psr1 21856 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑆) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))) |
| 36 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (1r‘𝑆) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))) |
| 37 | 36 | fveq1d 6842 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1r‘𝑆)‘𝑦) = ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦)) |
| 38 | eqeq1 2733 | . . . . . . . 8 ⊢ (𝑑 = 𝑦 → (𝑑 = (𝐼 × {0}) ↔ 𝑦 = (𝐼 × {0}))) | |
| 39 | 38 | ifbid 4508 | . . . . . . 7 ⊢ (𝑑 = 𝑦 → if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 40 | eqid 2729 | . . . . . . 7 ⊢ (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 )) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 )) | |
| 41 | fvex 6853 | . . . . . . . 8 ⊢ (1r‘𝑅) ∈ V | |
| 42 | 33 | fvexi 6854 | . . . . . . . 8 ⊢ 0 ∈ V |
| 43 | 41, 42 | ifex 4535 | . . . . . . 7 ⊢ if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 ) ∈ V |
| 44 | 39, 40, 43 | fvmpt 6950 | . . . . . 6 ⊢ (𝑦 ∈ 𝐷 → ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 45 | 44 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 46 | 37, 45 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1r‘𝑆)‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 47 | 25, 27, 29, 29, 30, 32, 46 | offval 7642 | . . 3 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆)) = (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )))) |
| 48 | ovif2 7468 | . . . . 5 ⊢ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), (𝑋(.r‘𝑅)(1r‘𝑅)), (𝑋(.r‘𝑅) 0 )) | |
| 49 | 2, 18, 34, 5, 1 | ringridmd 20158 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅)(1r‘𝑅)) = 𝑋) |
| 50 | 2, 18, 33, 5, 1 | ringrzd 20181 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅) 0 ) = 0 ) |
| 51 | 49, 50 | ifeq12d 4506 | . . . . 5 ⊢ (𝜑 → if(𝑦 = (𝐼 × {0}), (𝑋(.r‘𝑅)(1r‘𝑅)), (𝑋(.r‘𝑅) 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 )) |
| 52 | 48, 51 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 )) |
| 53 | 52 | mpteq2dv 5196 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| 54 | 47, 53 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆)) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| 55 | 16, 23, 54 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ifcif 4484 {csn 4585 ↦ cmpt 5183 × cxp 5629 ◡ccnv 5630 “ cima 5634 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 ↑m cmap 8776 Fincfn 8895 0cc0 11044 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 .rcmulr 17197 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 1rcur 20066 Ringcrg 20118 algSccascl 21737 mPwSer cmps 21789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-mulg 18976 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-ascl 21740 df-psr 21794 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |