![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrascl | Structured version Visualization version GIF version |
Description: Value of the scalar injection into the power series algebra. (Contributed by SN, 18-May-2025.) |
Ref | Expression |
---|---|
psrascl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrascl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psrascl.z | ⊢ 0 = (0g‘𝑅) |
psrascl.k | ⊢ 𝐾 = (Base‘𝑅) |
psrascl.a | ⊢ 𝐴 = (algSc‘𝑆) |
psrascl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrascl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
psrascl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
Ref | Expression |
---|---|
psrascl | ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrascl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
2 | psrascl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
3 | psrascl.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
4 | psrascl.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | psrascl.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
6 | 3, 4, 5 | psrsca 21956 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) |
7 | 6 | fveq2d 6905 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑆))) |
8 | 2, 7 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑆))) |
9 | 1, 8 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑆))) |
10 | psrascl.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑆) | |
11 | eqid 2726 | . . . 4 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
12 | eqid 2726 | . . . 4 ⊢ (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) | |
13 | eqid 2726 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
14 | eqid 2726 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
15 | 10, 11, 12, 13, 14 | asclval 21877 | . . 3 ⊢ (𝑋 ∈ (Base‘(Scalar‘𝑆)) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆))) |
16 | 9, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆))) |
17 | eqid 2726 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
18 | eqid 2726 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
19 | psrascl.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
20 | 3, 4, 5 | psrring 21979 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
21 | 17, 14 | ringidcl 20245 | . . . 4 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ (Base‘𝑆)) |
22 | 20, 21 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
23 | 3, 13, 2, 17, 18, 19, 1, 22 | psrvsca 21958 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆)) = ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆))) |
24 | fnconstg 6790 | . . . . 5 ⊢ (𝑋 ∈ 𝐾 → (𝐷 × {𝑋}) Fn 𝐷) | |
25 | 1, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐷 × {𝑋}) Fn 𝐷) |
26 | 3, 2, 19, 17, 22 | psrelbas 21943 | . . . . 5 ⊢ (𝜑 → (1r‘𝑆):𝐷⟶𝐾) |
27 | 26 | ffnd 6729 | . . . 4 ⊢ (𝜑 → (1r‘𝑆) Fn 𝐷) |
28 | ovexd 7459 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
29 | 19, 28 | rabexd 5340 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
30 | inidm 4220 | . . . 4 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
31 | fvconst2g 7219 | . . . . 5 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑦 ∈ 𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋) | |
32 | 1, 31 | sylan 578 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋) |
33 | psrascl.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
34 | eqid 2726 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
35 | 3, 4, 5, 19, 33, 34, 14 | psr1 21980 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑆) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))) |
36 | 35 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (1r‘𝑆) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))) |
37 | 36 | fveq1d 6903 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1r‘𝑆)‘𝑦) = ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦)) |
38 | eqeq1 2730 | . . . . . . . 8 ⊢ (𝑑 = 𝑦 → (𝑑 = (𝐼 × {0}) ↔ 𝑦 = (𝐼 × {0}))) | |
39 | 38 | ifbid 4556 | . . . . . . 7 ⊢ (𝑑 = 𝑦 → if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
40 | eqid 2726 | . . . . . . 7 ⊢ (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 )) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 )) | |
41 | fvex 6914 | . . . . . . . 8 ⊢ (1r‘𝑅) ∈ V | |
42 | 33 | fvexi 6915 | . . . . . . . 8 ⊢ 0 ∈ V |
43 | 41, 42 | ifex 4583 | . . . . . . 7 ⊢ if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 ) ∈ V |
44 | 39, 40, 43 | fvmpt 7009 | . . . . . 6 ⊢ (𝑦 ∈ 𝐷 → ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
45 | 44 | adantl 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
46 | 37, 45 | eqtrd 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1r‘𝑆)‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
47 | 25, 27, 29, 29, 30, 32, 46 | offval 7699 | . . 3 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆)) = (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )))) |
48 | ovif2 7524 | . . . . 5 ⊢ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), (𝑋(.r‘𝑅)(1r‘𝑅)), (𝑋(.r‘𝑅) 0 )) | |
49 | 2, 18, 34, 5, 1 | ringridmd 20252 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅)(1r‘𝑅)) = 𝑋) |
50 | 2, 18, 33, 5, 1 | ringrzd 20275 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅) 0 ) = 0 ) |
51 | 49, 50 | ifeq12d 4554 | . . . . 5 ⊢ (𝜑 → if(𝑦 = (𝐼 × {0}), (𝑋(.r‘𝑅)(1r‘𝑅)), (𝑋(.r‘𝑅) 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 )) |
52 | 48, 51 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 )) |
53 | 52 | mpteq2dv 5255 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
54 | 47, 53 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆)) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
55 | 16, 23, 54 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 Vcvv 3462 ifcif 4533 {csn 4633 ↦ cmpt 5236 × cxp 5680 ◡ccnv 5681 “ cima 5685 Fn wfn 6549 ‘cfv 6554 (class class class)co 7424 ∘f cof 7688 ↑m cmap 8855 Fincfn 8974 0cc0 11158 ℕcn 12264 ℕ0cn0 12524 Basecbs 17213 .rcmulr 17267 Scalarcsca 17269 ·𝑠 cvsca 17270 0gc0g 17454 1rcur 20164 Ringcrg 20216 algSccascl 21850 mPwSer cmps 21901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-ofr 7691 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-sup 9485 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-fzo 13682 df-seq 14022 df-hash 14348 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-hom 17290 df-cco 17291 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-mhm 18773 df-submnd 18774 df-grp 18931 df-minusg 18932 df-mulg 19062 df-ghm 19207 df-cntz 19311 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-ascl 21853 df-psr 21906 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |