![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrascl | Structured version Visualization version GIF version |
Description: Value of the scalar injection into the power series algebra. (Contributed by SN, 18-May-2025.) |
Ref | Expression |
---|---|
psrascl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrascl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psrascl.z | ⊢ 0 = (0g‘𝑅) |
psrascl.k | ⊢ 𝐾 = (Base‘𝑅) |
psrascl.a | ⊢ 𝐴 = (algSc‘𝑆) |
psrascl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrascl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
psrascl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
Ref | Expression |
---|---|
psrascl | ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrascl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
2 | psrascl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
3 | psrascl.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
4 | psrascl.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | psrascl.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
6 | 3, 4, 5 | psrsca 21990 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) |
7 | 6 | fveq2d 6924 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑆))) |
8 | 2, 7 | eqtrid 2792 | . . . 4 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑆))) |
9 | 1, 8 | eleqtrd 2846 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑆))) |
10 | psrascl.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑆) | |
11 | eqid 2740 | . . . 4 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
12 | eqid 2740 | . . . 4 ⊢ (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) | |
13 | eqid 2740 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
14 | eqid 2740 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
15 | 10, 11, 12, 13, 14 | asclval 21923 | . . 3 ⊢ (𝑋 ∈ (Base‘(Scalar‘𝑆)) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆))) |
16 | 9, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆))) |
17 | eqid 2740 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
18 | eqid 2740 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
19 | psrascl.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
20 | 3, 4, 5 | psrring 22013 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
21 | 17, 14 | ringidcl 20289 | . . . 4 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ (Base‘𝑆)) |
22 | 20, 21 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
23 | 3, 13, 2, 17, 18, 19, 1, 22 | psrvsca 21992 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆)) = ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆))) |
24 | fnconstg 6809 | . . . . 5 ⊢ (𝑋 ∈ 𝐾 → (𝐷 × {𝑋}) Fn 𝐷) | |
25 | 1, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐷 × {𝑋}) Fn 𝐷) |
26 | 3, 2, 19, 17, 22 | psrelbas 21977 | . . . . 5 ⊢ (𝜑 → (1r‘𝑆):𝐷⟶𝐾) |
27 | 26 | ffnd 6748 | . . . 4 ⊢ (𝜑 → (1r‘𝑆) Fn 𝐷) |
28 | ovexd 7483 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
29 | 19, 28 | rabexd 5358 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
30 | inidm 4248 | . . . 4 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
31 | fvconst2g 7239 | . . . . 5 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑦 ∈ 𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋) | |
32 | 1, 31 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋) |
33 | psrascl.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
34 | eqid 2740 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
35 | 3, 4, 5, 19, 33, 34, 14 | psr1 22014 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑆) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))) |
36 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (1r‘𝑆) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))) |
37 | 36 | fveq1d 6922 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1r‘𝑆)‘𝑦) = ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦)) |
38 | eqeq1 2744 | . . . . . . . 8 ⊢ (𝑑 = 𝑦 → (𝑑 = (𝐼 × {0}) ↔ 𝑦 = (𝐼 × {0}))) | |
39 | 38 | ifbid 4571 | . . . . . . 7 ⊢ (𝑑 = 𝑦 → if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
40 | eqid 2740 | . . . . . . 7 ⊢ (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 )) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 )) | |
41 | fvex 6933 | . . . . . . . 8 ⊢ (1r‘𝑅) ∈ V | |
42 | 33 | fvexi 6934 | . . . . . . . 8 ⊢ 0 ∈ V |
43 | 41, 42 | ifex 4598 | . . . . . . 7 ⊢ if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 ) ∈ V |
44 | 39, 40, 43 | fvmpt 7029 | . . . . . 6 ⊢ (𝑦 ∈ 𝐷 → ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
45 | 44 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
46 | 37, 45 | eqtrd 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1r‘𝑆)‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
47 | 25, 27, 29, 29, 30, 32, 46 | offval 7723 | . . 3 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆)) = (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )))) |
48 | ovif2 7549 | . . . . 5 ⊢ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), (𝑋(.r‘𝑅)(1r‘𝑅)), (𝑋(.r‘𝑅) 0 )) | |
49 | 2, 18, 34, 5, 1 | ringridmd 20296 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅)(1r‘𝑅)) = 𝑋) |
50 | 2, 18, 33, 5, 1 | ringrzd 20319 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅) 0 ) = 0 ) |
51 | 49, 50 | ifeq12d 4569 | . . . . 5 ⊢ (𝜑 → if(𝑦 = (𝐼 × {0}), (𝑋(.r‘𝑅)(1r‘𝑅)), (𝑋(.r‘𝑅) 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 )) |
52 | 48, 51 | eqtrid 2792 | . . . 4 ⊢ (𝜑 → (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 )) |
53 | 52 | mpteq2dv 5268 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
54 | 47, 53 | eqtrd 2780 | . 2 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆)) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
55 | 16, 23, 54 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ifcif 4548 {csn 4648 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 “ cima 5703 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 ↑m cmap 8884 Fincfn 9003 0cc0 11184 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 1rcur 20208 Ringcrg 20260 algSccascl 21895 mPwSer cmps 21947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-ascl 21898 df-psr 21952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |