MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrascl Structured version   Visualization version   GIF version

Theorem psrascl 21988
Description: Value of the scalar injection into the power series algebra. (Contributed by SN, 18-May-2025.)
Hypotheses
Ref Expression
psrascl.s 𝑆 = (𝐼 mPwSer 𝑅)
psrascl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrascl.z 0 = (0g𝑅)
psrascl.k 𝐾 = (Base‘𝑅)
psrascl.a 𝐴 = (algSc‘𝑆)
psrascl.i (𝜑𝐼𝑉)
psrascl.r (𝜑𝑅 ∈ Ring)
psrascl.x (𝜑𝑋𝐾)
Assertion
Ref Expression
psrascl (𝜑 → (𝐴𝑋) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 )))
Distinct variable groups:   0 ,𝑓   𝑦,𝐷   𝑓,𝐼   𝑅,𝑓   𝑦,𝑅   𝑦,𝑋   𝜑,𝑦   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑦,𝑓)   𝐷(𝑓)   𝑆(𝑓)   𝐼(𝑦)   𝐾(𝑦,𝑓)   𝑉(𝑦,𝑓)   𝑋(𝑓)   0 (𝑦)

Proof of Theorem psrascl
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 psrascl.x . . . 4 (𝜑𝑋𝐾)
2 psrascl.k . . . . 5 𝐾 = (Base‘𝑅)
3 psrascl.s . . . . . . 7 𝑆 = (𝐼 mPwSer 𝑅)
4 psrascl.i . . . . . . 7 (𝜑𝐼𝑉)
5 psrascl.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
63, 4, 5psrsca 21956 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑆))
76fveq2d 6905 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑆)))
82, 7eqtrid 2778 . . . 4 (𝜑𝐾 = (Base‘(Scalar‘𝑆)))
91, 8eleqtrd 2828 . . 3 (𝜑𝑋 ∈ (Base‘(Scalar‘𝑆)))
10 psrascl.a . . . 4 𝐴 = (algSc‘𝑆)
11 eqid 2726 . . . 4 (Scalar‘𝑆) = (Scalar‘𝑆)
12 eqid 2726 . . . 4 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
13 eqid 2726 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
14 eqid 2726 . . . 4 (1r𝑆) = (1r𝑆)
1510, 11, 12, 13, 14asclval 21877 . . 3 (𝑋 ∈ (Base‘(Scalar‘𝑆)) → (𝐴𝑋) = (𝑋( ·𝑠𝑆)(1r𝑆)))
169, 15syl 17 . 2 (𝜑 → (𝐴𝑋) = (𝑋( ·𝑠𝑆)(1r𝑆)))
17 eqid 2726 . . 3 (Base‘𝑆) = (Base‘𝑆)
18 eqid 2726 . . 3 (.r𝑅) = (.r𝑅)
19 psrascl.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
203, 4, 5psrring 21979 . . . 4 (𝜑𝑆 ∈ Ring)
2117, 14ringidcl 20245 . . . 4 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
2220, 21syl 17 . . 3 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
233, 13, 2, 17, 18, 19, 1, 22psrvsca 21958 . 2 (𝜑 → (𝑋( ·𝑠𝑆)(1r𝑆)) = ((𝐷 × {𝑋}) ∘f (.r𝑅)(1r𝑆)))
24 fnconstg 6790 . . . . 5 (𝑋𝐾 → (𝐷 × {𝑋}) Fn 𝐷)
251, 24syl 17 . . . 4 (𝜑 → (𝐷 × {𝑋}) Fn 𝐷)
263, 2, 19, 17, 22psrelbas 21943 . . . . 5 (𝜑 → (1r𝑆):𝐷𝐾)
2726ffnd 6729 . . . 4 (𝜑 → (1r𝑆) Fn 𝐷)
28 ovexd 7459 . . . . 5 (𝜑 → (ℕ0m 𝐼) ∈ V)
2919, 28rabexd 5340 . . . 4 (𝜑𝐷 ∈ V)
30 inidm 4220 . . . 4 (𝐷𝐷) = 𝐷
31 fvconst2g 7219 . . . . 5 ((𝑋𝐾𝑦𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋)
321, 31sylan 578 . . . 4 ((𝜑𝑦𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋)
33 psrascl.z . . . . . . . 8 0 = (0g𝑅)
34 eqid 2726 . . . . . . . 8 (1r𝑅) = (1r𝑅)
353, 4, 5, 19, 33, 34, 14psr1 21980 . . . . . . 7 (𝜑 → (1r𝑆) = (𝑑𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), 0 )))
3635adantr 479 . . . . . 6 ((𝜑𝑦𝐷) → (1r𝑆) = (𝑑𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), 0 )))
3736fveq1d 6903 . . . . 5 ((𝜑𝑦𝐷) → ((1r𝑆)‘𝑦) = ((𝑑𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), 0 ))‘𝑦))
38 eqeq1 2730 . . . . . . . 8 (𝑑 = 𝑦 → (𝑑 = (𝐼 × {0}) ↔ 𝑦 = (𝐼 × {0})))
3938ifbid 4556 . . . . . . 7 (𝑑 = 𝑦 → if(𝑑 = (𝐼 × {0}), (1r𝑅), 0 ) = if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 ))
40 eqid 2726 . . . . . . 7 (𝑑𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), 0 )) = (𝑑𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), 0 ))
41 fvex 6914 . . . . . . . 8 (1r𝑅) ∈ V
4233fvexi 6915 . . . . . . . 8 0 ∈ V
4341, 42ifex 4583 . . . . . . 7 if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 ) ∈ V
4439, 40, 43fvmpt 7009 . . . . . 6 (𝑦𝐷 → ((𝑑𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 ))
4544adantl 480 . . . . 5 ((𝜑𝑦𝐷) → ((𝑑𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 ))
4637, 45eqtrd 2766 . . . 4 ((𝜑𝑦𝐷) → ((1r𝑆)‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 ))
4725, 27, 29, 29, 30, 32, 46offval 7699 . . 3 (𝜑 → ((𝐷 × {𝑋}) ∘f (.r𝑅)(1r𝑆)) = (𝑦𝐷 ↦ (𝑋(.r𝑅)if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 ))))
48 ovif2 7524 . . . . 5 (𝑋(.r𝑅)if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), (𝑋(.r𝑅)(1r𝑅)), (𝑋(.r𝑅) 0 ))
492, 18, 34, 5, 1ringridmd 20252 . . . . . 6 (𝜑 → (𝑋(.r𝑅)(1r𝑅)) = 𝑋)
502, 18, 33, 5, 1ringrzd 20275 . . . . . 6 (𝜑 → (𝑋(.r𝑅) 0 ) = 0 )
5149, 50ifeq12d 4554 . . . . 5 (𝜑 → if(𝑦 = (𝐼 × {0}), (𝑋(.r𝑅)(1r𝑅)), (𝑋(.r𝑅) 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))
5248, 51eqtrid 2778 . . . 4 (𝜑 → (𝑋(.r𝑅)if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))
5352mpteq2dv 5255 . . 3 (𝜑 → (𝑦𝐷 ↦ (𝑋(.r𝑅)if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 )))
5447, 53eqtrd 2766 . 2 (𝜑 → ((𝐷 × {𝑋}) ∘f (.r𝑅)(1r𝑆)) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 )))
5516, 23, 543eqtrd 2770 1 (𝜑 → (𝐴𝑋) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {crab 3419  Vcvv 3462  ifcif 4533  {csn 4633  cmpt 5236   × cxp 5680  ccnv 5681  cima 5685   Fn wfn 6549  cfv 6554  (class class class)co 7424  f cof 7688  m cmap 8855  Fincfn 8974  0cc0 11158  cn 12264  0cn0 12524  Basecbs 17213  .rcmulr 17267  Scalarcsca 17269   ·𝑠 cvsca 17270  0gc0g 17454  1rcur 20164  Ringcrg 20216  algSccascl 21850   mPwSer cmps 21901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-ofr 7691  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-hom 17290  df-cco 17291  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-mulg 19062  df-ghm 19207  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-ascl 21853  df-psr 21906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator