| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrascl | Structured version Visualization version GIF version | ||
| Description: Value of the scalar injection into the power series algebra. (Contributed by SN, 18-May-2025.) |
| Ref | Expression |
|---|---|
| psrascl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psrascl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| psrascl.z | ⊢ 0 = (0g‘𝑅) |
| psrascl.k | ⊢ 𝐾 = (Base‘𝑅) |
| psrascl.a | ⊢ 𝐴 = (algSc‘𝑆) |
| psrascl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psrascl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| psrascl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| psrascl | ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrascl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 2 | psrascl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | psrascl.s | . . . . . . 7 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 4 | psrascl.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | psrascl.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | 3, 4, 5 | psrsca 21879 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) |
| 7 | 6 | fveq2d 6821 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑆))) |
| 8 | 2, 7 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑆))) |
| 9 | 1, 8 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑆))) |
| 10 | psrascl.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑆) | |
| 11 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 12 | eqid 2731 | . . . 4 ⊢ (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) | |
| 13 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 14 | eqid 2731 | . . . 4 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 15 | 10, 11, 12, 13, 14 | asclval 21812 | . . 3 ⊢ (𝑋 ∈ (Base‘(Scalar‘𝑆)) → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆))) |
| 16 | 9, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝑋) = (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆))) |
| 17 | eqid 2731 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 18 | eqid 2731 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | psrascl.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 20 | 3, 4, 5 | psrring 21902 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 21 | 17, 14 | ringidcl 20178 | . . . 4 ⊢ (𝑆 ∈ Ring → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
| 23 | 3, 13, 2, 17, 18, 19, 1, 22 | psrvsca 21881 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑆)(1r‘𝑆)) = ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆))) |
| 24 | fnconstg 6706 | . . . . 5 ⊢ (𝑋 ∈ 𝐾 → (𝐷 × {𝑋}) Fn 𝐷) | |
| 25 | 1, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐷 × {𝑋}) Fn 𝐷) |
| 26 | 3, 2, 19, 17, 22 | psrelbas 21866 | . . . . 5 ⊢ (𝜑 → (1r‘𝑆):𝐷⟶𝐾) |
| 27 | 26 | ffnd 6647 | . . . 4 ⊢ (𝜑 → (1r‘𝑆) Fn 𝐷) |
| 28 | ovexd 7376 | . . . . 5 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 29 | 19, 28 | rabexd 5273 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 30 | inidm 4172 | . . . 4 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
| 31 | fvconst2g 7131 | . . . . 5 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑦 ∈ 𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋) | |
| 32 | 1, 31 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐷 × {𝑋})‘𝑦) = 𝑋) |
| 33 | psrascl.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 34 | eqid 2731 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 35 | 3, 4, 5, 19, 33, 34, 14 | psr1 21903 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑆) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))) |
| 36 | 35 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (1r‘𝑆) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))) |
| 37 | 36 | fveq1d 6819 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1r‘𝑆)‘𝑦) = ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦)) |
| 38 | eqeq1 2735 | . . . . . . . 8 ⊢ (𝑑 = 𝑦 → (𝑑 = (𝐼 × {0}) ↔ 𝑦 = (𝐼 × {0}))) | |
| 39 | 38 | ifbid 4494 | . . . . . . 7 ⊢ (𝑑 = 𝑦 → if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 40 | eqid 2731 | . . . . . . 7 ⊢ (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 )) = (𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 )) | |
| 41 | fvex 6830 | . . . . . . . 8 ⊢ (1r‘𝑅) ∈ V | |
| 42 | 33 | fvexi 6831 | . . . . . . . 8 ⊢ 0 ∈ V |
| 43 | 41, 42 | ifex 4521 | . . . . . . 7 ⊢ if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 ) ∈ V |
| 44 | 39, 40, 43 | fvmpt 6924 | . . . . . 6 ⊢ (𝑦 ∈ 𝐷 → ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 45 | 44 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑑 ∈ 𝐷 ↦ if(𝑑 = (𝐼 × {0}), (1r‘𝑅), 0 ))‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 46 | 37, 45 | eqtrd 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1r‘𝑆)‘𝑦) = if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) |
| 47 | 25, 27, 29, 29, 30, 32, 46 | offval 7614 | . . 3 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆)) = (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )))) |
| 48 | ovif2 7440 | . . . . 5 ⊢ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), (𝑋(.r‘𝑅)(1r‘𝑅)), (𝑋(.r‘𝑅) 0 )) | |
| 49 | 2, 18, 34, 5, 1 | ringridmd 20186 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅)(1r‘𝑅)) = 𝑋) |
| 50 | 2, 18, 33, 5, 1 | ringrzd 20209 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅) 0 ) = 0 ) |
| 51 | 49, 50 | ifeq12d 4492 | . . . . 5 ⊢ (𝜑 → if(𝑦 = (𝐼 × {0}), (𝑋(.r‘𝑅)(1r‘𝑅)), (𝑋(.r‘𝑅) 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 )) |
| 52 | 48, 51 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 )) = if(𝑦 = (𝐼 × {0}), 𝑋, 0 )) |
| 53 | 52 | mpteq2dv 5180 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = (𝐼 × {0}), (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| 54 | 47, 53 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘f (.r‘𝑅)(1r‘𝑆)) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| 55 | 16, 23, 54 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ifcif 4470 {csn 4571 ↦ cmpt 5167 × cxp 5609 ◡ccnv 5610 “ cima 5614 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 ↑m cmap 8745 Fincfn 8864 0cc0 11001 ℕcn 12120 ℕ0cn0 12376 Basecbs 17115 .rcmulr 17157 Scalarcsca 17159 ·𝑠 cvsca 17160 0gc0g 17338 1rcur 20094 Ringcrg 20146 algSccascl 21784 mPwSer cmps 21836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-mulg 18976 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-ascl 21787 df-psr 21841 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |