Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodadd2cncf | Structured version Visualization version GIF version |
Description: 𝐹 is continuous. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
fprodadd2cncf.k | ⊢ Ⅎ𝑘𝜑 |
fprodadd2cncf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodadd2cncf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fprodadd2cncf.f | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥)) |
Ref | Expression |
---|---|
fprodadd2cncf | ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodadd2cncf.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥))) |
3 | fprodadd2cncf.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
4 | eqid 2737 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
5 | 4 | cnfldtopon 24029 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
7 | fprodadd2cncf.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
8 | fprodadd2cncf.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
9 | eqid 2737 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ (𝐵 + 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐵 + 𝑥)) | |
10 | 8, 9 | add2cncf 43693 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ ℂ ↦ (𝐵 + 𝑥)) ∈ (ℂ–cn→ℂ)) |
11 | 4 | cncfcn1 24157 | . . . . . 6 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
12 | 11 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
13 | 10, 12 | eleqtrd 2840 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ ℂ ↦ (𝐵 + 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
14 | 3, 4, 6, 7, 13 | fprodcn 43391 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ∏𝑘 ∈ 𝐴 (𝐵 + 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
15 | 2, 14 | eqeltrd 2838 | . 2 ⊢ (𝜑 → 𝐹 ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
16 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
17 | 16 | eqcomd 2743 | . 2 ⊢ (𝜑 → ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) = (ℂ–cn→ℂ)) |
18 | 15, 17 | eleqtrd 2840 | 1 ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 ↦ cmpt 5170 ‘cfv 6466 (class class class)co 7317 Fincfn 8783 ℂcc 10949 + caddc 10954 ∏cprod 15694 TopOpenctopn 17209 ℂfldccnfld 20680 TopOnctopon 22142 Cn ccn 22458 –cn→ccncf 24122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-inf2 9477 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 ax-addf 11030 ax-mulf 11031 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-of 7575 df-om 7760 df-1st 7878 df-2nd 7879 df-supp 8027 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-2o 8347 df-er 8548 df-map 8667 df-ixp 8736 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-fsupp 9206 df-fi 9247 df-sup 9278 df-inf 9279 df-oi 9346 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 df-n0 12314 df-z 12400 df-dec 12518 df-uz 12663 df-q 12769 df-rp 12811 df-xneg 12928 df-xadd 12929 df-xmul 12930 df-icc 13166 df-fz 13320 df-fzo 13463 df-seq 13802 df-exp 13863 df-hash 14125 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-clim 15276 df-prod 15695 df-struct 16925 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-starv 17054 df-sca 17055 df-vsca 17056 df-ip 17057 df-tset 17058 df-ple 17059 df-ds 17061 df-unif 17062 df-hom 17063 df-cco 17064 df-rest 17210 df-topn 17211 df-0g 17229 df-gsum 17230 df-topgen 17231 df-pt 17232 df-prds 17235 df-xrs 17290 df-qtop 17295 df-imas 17296 df-xps 17298 df-mre 17372 df-mrc 17373 df-acs 17375 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-submnd 18508 df-mulg 18777 df-cntz 18999 df-cmn 19463 df-psmet 20672 df-xmet 20673 df-met 20674 df-bl 20675 df-mopn 20676 df-cnfld 20681 df-top 22126 df-topon 22143 df-topsp 22165 df-bases 22179 df-cn 22461 df-cnp 22462 df-tx 22796 df-hmeo 22989 df-xms 23556 df-ms 23557 df-tms 23558 df-cncf 24124 |
This theorem is referenced by: fprodaddrecnncnvlem 43700 |
Copyright terms: Public domain | W3C validator |